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Growing memory capacity and low cost have 
created a niche for in-memory solutions.

Low Latency memory hardware is more 
expensive (39x) and has lower capacity than 
commonly used DDRx DRAM.

Though memory performance is improving, it is 
not likely to match CPU performance anytime 
soon
Need alternative techniques to mitigate memory 
latency!

K. K. Chang. Understanding and Improving Latency of DRAM-Based Memory Systems. PhD thesis, Carnegie Mellon University, 2017.
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Launch Date Q3’14

Clock Freq. 3.0 GHz

Cores / Threads 8 / 16

L3 Cache 20 MB

Memory 
Channels

4

Memory 
Bandwidth

68 GB/s

caches everywhere! reduces average memory latency 
assumes locality 

๏ caches > 80% of 
CPU area,  

๏big energy sink! 
๏ application must 

have temporal and/
or spatial locality 

๏ up to 7 levels 
storage hierarchy 
(register file, L1, L2, 
L3, memory, disk 
cache, disk)
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[DaMoN’13] Tözün, P. et al. OLTP in 
wonderland: where do cache misses 
come from in major OLTP components?
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[TODS’07] Chen, S. et al. Improving Hash Join 
Performance through Prefetching 
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[DaMoN’13] Tözün, P. et al. OLTP in 
wonderland: where do cache misses 
come from in major OLTP components?
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BIG data  
(x petaB) + hyper 

dimensional

no locality!

no data 
marshaling sparse data
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You have to know the past to understand the 
present 

- Carl Sagan
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✦ latency mitigations, aka “caching” 
❖ effective only with spatial/temporal localities  

✦ streaming: latency incorporated into pipeline 
❖ requires spatial locality 

✦ latency masking, aka hardware multithreading 
❖ fast context switch after memory access 
❖ small thread context 
❖ concurrency == outstanding memory requests
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❖ main architect of 
❖ Denelcor HEP (1982) 
❖ Horizon (1985-88) @ IDA SRC 
❖ Tera MTA (1999) later Cray XMT

❖ latency masking 
❖ = do useful work while waiting for memory = multithreading 
❖ switch to a ready process on long-latency I/O operations 
❖ => higher throughput 
❖ 50 years ago it was I/O latency => multi-programming

❖ https://www.microsoft.com/en-us/research/people/burtons/
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✦ supercomputer, barrel processor 
✦ 128 independent threads/processor 
✦ 2 inst/cycle issued: 1 ALU, 1 memory 
✦ 1 full/empty bit per word insures correct 

ordering of memory accesses 
✦ longest memory latency: 128 cycles 
✦ randomized memory: reduces bank conflicts  
✦ processor & memory nodes on a 3D torus 

interconnection network 
✦ 4096 nodes: sparsely populated

…

registers

datapath
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✦ CPU that switches between threads of execution on 
every cycle.  
✦ also known as "interleaved" or "fine-grained" temporal multithreading.  
✦ each thread is assigned its own program counter and other hardware 

registers (architectural state).  
✦ guarantee each thread will execute one instruction every n cycles.  
✦ n-way barrel processor acts like n separate processors,  

✦ each running at ~ 1/n the original speed. 

thread 
state

thread 
state

thread 
state

thread 
state

thread 
state

thread 
state

thread 
state

thread 
state

MEMORY

execution 
order
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what if we take it a step further?

�14

✦ trade bandwidth for latency 
✦ custom or semi custom processor/accelerator 
✦ no need for large register files and thread state 

➡ smaller data path  
➡ more processors 
➡ more threads per processor (engine or core) 
➡ much higher throughput! 

✦ suited for large scale irregular applications: 
➡ data analytics, databases, sparse linear algebra: SpMV, 

SpMM, graph algorithms, bioinformatics
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Call them filament, to 
distinguish from “threads” 
Preempting executing filaments 
once it access memory 
Ready & Waiting Filament 
Queues fit 1000s of thread 
states 
Massive parallelism: ≥ 4,000 
waiting filaments 

�15
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MEMORY

wait queue filament termination

DATA PATH

read 

input

data

write 

output

data
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A[i] += B[i] * C[D[i]];  % typical of sparse linear algebra

wait queue

MEMORY

DATA PATH

D[i]

fetch D[i]

B[i]

fetch B[i]

generate i

C[D[i]]

fetch C[D[i]]

write A[i]

∑
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❖ L	=	pipeline	latency		
❖ B	=	memory	bandwidth	
❖ C	=	parallelism

S λ

a queueing system

and often forgotten Little law

❖ N	=	customers	in	system,	w	=	wait	time	
❖ ∀	distribution	of	λ	and	S	(service	time)

N = λ.w

B

L C  = L.B

high bandwidth + hyper-pipelining —> massive parallelism
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✦Regular Applications 
❖ Have good temporal and spatial locality 
❖ Caches are well suited for these types of applications 

✦Irregular Applications 
❖ Have poor temporal and spatial locality 
❖ Caches are NOT well suited for these types of applications 
❖ Multithreading is an alternative 

• Can mask long memory latencies 
• Needs high bandwidth to support a large number of concurrent threads

✦Won’t increasing the cache size mitigate latency and improve 
performance? 
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fixed degree BFS variable degree BFS
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Convey HC-2ex

Clock Freq. 150 MHz

Memory Controllers 8

Memory Channels 16 / FPGA

Memory Bandwidth 76.8 GB/s

Outstanding Requests ~ 500 Requests 
/ Channel

Data bus width 8 Byte

‣ multi bank memory architecture

‣ randomized memory allocation
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✦ filament execution model 
✦ application - SpMV 
✦ application - Selection 
✦ application - Group by aggregation 
✦ conclusion
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✦ selection is a database operator 
‣ selects all rows (tuples) in a relation (table) 
‣ that satisfy a set of conditions 
‣ expressed as a logical expression on the attributes 
‣ attributes (columns) are elements of a tuple 
‣ e.g. ((a1 > 10) ∧ (a2>0)) ∨ ((a10<100) ∧ (a13<0)) 

✦ a very common database operator 
‣ poor locality 
‣ relation can be store row or column wise
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3 20 3 NV 1989 0 18
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relation example
row/

attribute a1 a2 a3 a4 a5 a6

0 5 -70 CA 1992 0 12
1 10 70 CO 1990 1 4
2 15 -10 AZ 2001 1 24
3 20 3 NV 1989 0 18

query example: 
query A: (a5=1) ∨ (a3 = NV) ∨ [(a1<20)∧(a2>0)]

query B: (a2<0) ∧ (a3=CA) ∧ (a5=0)

qualifying rows
row/
query qA qB

0 N Y
1 Y N
2 Y N
3 N N
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qA predicate control block
condition action

attri
bute op const if T if F

a5 = 1 Terminate T a3

a3 = NV Terminate T a5
a1 < 20 a2 Terminate F

a2 > 0 Terminate T Terminate F

qB predicate control block
condition action

attri
bute op const if T if F

a2 < 0 a3 Terminate F

a3 = CA a5 Terminate F
a5 = 0 Terminate T Terminate F

query example: 
query A: (a5=1) ∨ (a3 = NV) ∨ [(a1<20)∧(a2>0)]

query B: (a2<0) ∧ (a3=CA) ∧ (a5=0)

predicate control block (PCB) encodes 
the selection logic: 

‣ early termination (T or F) 
‣ only the required attributes are 

fetched (no caching)
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Explanations: 

• PCB: process control block 
(stored locally on the FPGA) 

• The state of each filament is 
the current index into the PCB 

• Multiple queries can be 
executed simultaneously on the 
same relation, the state 
becomes the (PCB #, index)  

• data is returned from memory 
in the order fetched, on one 
channel

Initialize filament 
• fetch offset of 1st attribute 

from PCB

• fetch 1st attribute from 

memory

Continue filament 
• fetch offset of next 

attribute from PCB

• fetch next 

attribute from 
memory

w
ai

t q
ue

ue

evaluate 
condition

from PCB

Write i as 
qualifying 
row

Terminate TContinue

From memory

row i
row i+1

….
….

ne
w

 jo
bs

 q
ue

ue
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Device Make & Model
Clock 
(MHz)

Cores
Memory 

Size (GB)

Memory 
Bandwidth, 

GB/s
CPU Intel Xeon E5-2643 3,300 8 128 51.2
GPU Nvidia Titan X 1,500 3,584 12 480.0
FPGA Virtex6 – 760 150 64 64 76.8

‣ Each row consists of 8 fixed size 64-bit columns. 
‣ Query selectivity was varied from 0% to 100% (0%: no 

row qualifies, 100% all rows qualify) 
‣ Dataset varied from 8M – 128M.  
‣ Results were obtained on the following platforms:
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‣ Query Q6 for our evaluation because all select 
conditions apply on the columns of one table and 
has 5 predicates 

‣ Query Q6: 
 SELECT * FROM lineitem 
 WHERE l_shipdate>= date ‘1995-01-01’ AND  
 l_shipdate<date ‘1996-01-01’ AND 
  l_discount between 0.04 AND 0.06 AND  
 l_quantity<24; 
‣ Lineitem table has 16 columns 
‣ Measured selectivity is 1.91% 
‣ CPU and GPU access common attributes only 

once. 
‣ MTP treats them as two independent 

attributes.
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‣ Memory Fetches: number of columns fetched for evaluation 
‣ Avg Evaluations per Row: predicate comparisons per row 
‣ Effective Bandwidth: total size of the “Lineitem” table processed per unit 

time / theoretical peak bandwidth, prescribed in [1]. 
‣ Peak Bandwidth Utilization: actual amount of data fetched per unit time / 

theoretical peak bandwidth

[1]	B.	Sukhwani,	et	al.	Database	Analytics	Acceleration	Using	FPGAs.		Parallel	Architectures	and	Compilation	Techniques,	2012.

CPU 
Scalar

CPU 
SIMD GPU Filament

Memory Fetches 100% 18.75% 18.75% 11.4%
Avg Evaluations (per Row) 3 3 3 1.83
Effective Bandwidth Speedup 0.47 3.44 2.01 6.13
Peak Bandwidth Utilization 47.6% 61.2% 36.6% 70.3%
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✦ background  
✦ filament execution model 
✦ application - SpMV 
✦ application - Selection 
✦ application - Group by aggregation 
✦ conclusion
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✦Non-deterministic # threads 
❖ requires inter-thread synchronization 

➡ only FPGA platforms that supports in-memory 
synchronization: Convey MX 

➡ Heavy overhead
✦ Move the synchronization on-chip 

❖ use a CAM to cache recently seen nodes: reduces 
number of memory accesses 

❖ map threads (nodes) to engines deterministically 
❖ deal with load balancing
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✦ CAM caches address of all pending memory accesses 
❖ all accesses are checked in CAM first 

• on miss, address is inserted into CAM 
• on hit, access is deferred  
• read hits get the returned value 
• write hits are deferred => strict serialization

✦ some writes need not be done in memory 
❖ e.g. aggregation: increment count locally ==> reduced traffic to memory 
❖ very effective on some workloads

✦each CAM guards a slice of the address space 
❖ partitioning of the address space 
❖ deal with load balancing
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✦ A crucial operation for any OLAP workload 
✦ Aggregation is challenging to implement in hardware logic 

❖ Not all tuples will create a new node (e.g. update existing node) 
❖ Every tuple reads and writes to the table 

✦ Content Addressable Memories (CAMs) 
❖ Used to enforce memory locks and merge jobs together 
❖ Splits nodes among multiple hash tables, need to be merged

1 123
Key Value

2 42
1 314

2 96
3 7

Relation	R

1 2
Key Count

3 1
2 2

Agg	Relation

Halstead	et	al.	FPGA-based	Multithreading	for	In-Memory	Hash	Joins,	in	7th	Biennial	Conf.	on	Innovative	Data	Systems	Research	
(CIDR’15),	Jan.	4-7,	2015,	Asilomar,	CA.
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Two CAMs: 
✦one used to synchronize the 
access to memory 

✦one to cache the value of the 
aggregate
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✦ CAM: Filter Keys 
❖ Jobs with the same 

key are merged 
✦ CAM: HT Lock 

❖ Locks individual hash 
table locations 

✦ Linked List 
❖ Read through to find 

match 
❖ Update/Insert node 

✦ Design is limited by the 
128 CAM location



FPL 2019 - © W. Najjar

merging operation

�40

✦ Mapping of nodes to engines done statically 
❖ bandwidth between FPGAs is not sufficient  
❖ may becomes the design bottleneck 

✦ Relation keys can be in multiple nodes in separate hash 
tables 
❖ keys are not duplicated within a hash table 

✦ After the job is completed  
❖ multiple hash table must be merged: a streaming operation 
❖ can be done on FPGA:  

➡ stream list chains for each hash table bucket 
➡ merge matching keys together 
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✦ target platform: Convey HC-2ex 
❖ 4 Xilinx Virtex 6 FPGAs x 16 Memory channels/FPGA 

✦ two designs 
❖ replicated cores (4 channels/core, 4 cores/FPGA) 
❖ multiplexed cores (2.5 channels/core, 6 cores/FPGA) - write 

channel shared by 2 cores

Main	Memory

..Memory	channels..1 2 15 16

Engine1 Engine4

Replicated	Engine	Design

…

16

Main	Memory

..Memory	channels..1 2 15

Engine1

Multiplexed	Engine	Design

Engine2

Multiplexed	Engines

…
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✦ coarse-grain 
❖ lock on hash table entry 
❖ fewer locks ==> less 

parallelism 
❖ lower pressure on 

synchronizing CAM

key

#

key

#

hash table

key

#

key

#

key

#

key

#

who wins?

✦ fine-grain lock 
❖ lock on linked list entry 
❖ more parallel filaments 
❖ higher pressure on CAM
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Relation Cardinality

Coarse Grain Locking - Uniform dataset FGL - Uniform dataset

Coarse Grain Locking - Heavy hitter dataset FGL - Heavy Hitter dataset

Coarse Grain Locking - Moving Cluster dataset FGL - Moving Cluster dataset

fine-grain lock

coarse-grain lock

✦ fine-grain ~4x higher throughput 
✦ note: constant throughput v/s relation cardinality 
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✦ 5 aggregation algorithms 
❖ Independent Tables 
❖ Shared Table  
❖ Partition & Aggregate 
❖ Hybrid Table 
❖ Partition with Local Aggregation Table

[ICDE’13]	Balkesen,	C.	et	al.	Main-memory	Hash	Joins	on	Multi-core	CPUs:	Tuning	to	the	underlying	hardware.		
[VLDB’07]	J.	Cieslewicz	et	al.	Adaptive	Aggregation	on	Chip	Multiprocessors.	
[DAMON’11]	Y.	Ye	et	al.	Scalable	aggregation	on	multicore	processors	

Hardware-oblivious	[VLDB’07]

Hardware-conscious	[VLDB’07]

Hybrid	[DAMON’11]
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✦ Software Approaches 
❖ Individual Table 
❖ Shared Table (atomic) 
❖ Hybrid Table 
❖ Partitioning 
❖ PLAT 

✦ Datasets 
❖ Uniform, Zipf 0.5, Heavy Hitter, 

Moving Cluster, Self Similar 

✦ 8M to 64M tuples/
benchmarks 

✦ 1K to 4M cardinality 

Hardware Region

FPGA board Virtex-6 760

# FPGAs 2

Clock Freq. 150 MHz

Engines per FPGA 4 / 3

Memory Channels 32

Memory Bandwidth 
(total)

38.4 GB/s

Software Region

CPU Intel Xeon 
E5-2643

# CPUs 1

Cores / Threads 4 / 8

Clock Freq. 3.3 GHz

L3 Cache 10 MB

Memory Bandwidth 
(total)

51.2 GB/s



FPL 2019 - © W. Najjar

uniform workload

�46

0

100

200

300

400

500

600

700

2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰ 2²²

Th
ro

ug
hp

ut
 (M

Tu
pl

es
/s

ec
)

Relation Cardinality

Shared Table Hybrid Aggregation Multiplexed FPGA Independent Tables
Partition & Aggregate PLAT FGL CAM64 FPGA FGL CAM128 FPGA

Uniform - 256 M tuples
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Heavy Hitter - 256 M tuples

filament

CPU

10x



FPL 2019 - © W. Najjar

0

200

400

600

800

1000

1200

2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰ 2²²

Th
ro

ug
hp

ut
 (M

Tu
pl

es
/s

ec
)

Relation Cardinality

Shared Table Hybrid Aggregation Multiplexed FPGA Independent Tables
Partition & Aggregate PLAT FGL CAM64 FPGA FGL CAM128

self-similar workload

�48

SelfSimilar — 256 M tuples

filament

CPU
10x
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✦ FPGA implementation achieves much higher memory 
bandwidth utilization
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✦ background  
✦ filament execution model 
✦ application - SpMV 
✦ application - Selection 
✦ application - Group by aggregation 
✦ conclusion
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✦ Big data is: BIG and multi-dimensional 
❖ access patterns to data are extremely irregular 
❖ no ideal storage scheme - constant poor locality 

✦Other applications 
❖ string matching, hash join, group by aggregation, 

selection, outer joins, sorting 

✦Challenges 
❖ inter-filament synchronization 
❖ dynamic load re-balancing (at run time)
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✦ advantages of filament execution 
‣ very small state allows  

‣ fast context switching between filaments 
‣ small storage for waiting queues 

‣ masking the latency of memory and non volatile storage 
‣ no reliance on locality, no caches 
‣ lower energy consumption 

✦ limitations: custom or semi-custom 
accelerators
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questions?

thank you!


