
WALID NAJJAR
UC RIVERSIDE

why I love memory latency

high throughput through latency masking hardware
multithreading

Yale is 80 - © W. Najjar

the team

�2�2

the cheerleaders:
Walid A. Najjar, Vassilis J. Tsotras,
Vagelis Papalexakis, Daniel Wong

the players:
• Robert J. Halstead (Xilinx)
• Ildar Absalyamov (Google)
• Prerna Budhkar (Intel)
• Skyler Windh (Micron)
• Vassileos Zois (UCR)
• Bashar Roumanous (UCR)
• Mohammadreza Rezvani (UCR)

FPL 2019 - © W. Najjar

outline

�3

✦ background
✦ filament execution model
✦ application - SpMV
✦ application - Selection
✦ application - Group by aggregation
✦ conclusion

Yale is 80 - © W. Najjar

current DRAM trends

�4

0

1000

2000

3000

1990 1992 1994 1996 2000 2002 2004 2006 2008 2010 2012 2014 2016

Cl
oc

k
(M

Hz
) Peak CPU Performance

Peak Memory Performance

Growing memory capacity and low cost have
created a niche for in-memory solutions.

Low Latency memory hardware is more
expensive (39x) and has lower capacity than
commonly used DDRx DRAM.

Though memory performance is improving, it is
not likely to match CPU performance anytime
soon
Need alternative techniques to mitigate memory
latency!

K. K. Chang. Understanding and Improving Latency of DRAM-Based Memory Systems. PhD thesis, Carnegie Mellon University, 2017.

Yale is 80 - © W. Najjar

latency mitigation - aka caching

�5

Yale is 80 - © W. Najjar

latency mitigation - aka caching

�5

Yale is 80 - © W. Najjar

latency mitigation - aka caching

�5

Intel Core-i7-5960x

Launch Date Q3’14

Clock Freq. 3.0 GHz

Cores / Threads 8 / 16

L3 Cache 20 MB

Memory
Channels

4

Memory
Bandwidth

68 GB/s

Yale is 80 - © W. Najjar

latency mitigation - aka caching

�5

Intel Core-i7-5960x

Launch Date Q3’14

Clock Freq. 3.0 GHz

Cores / Threads 8 / 16

L3 Cache 20 MB

Memory
Channels

4

Memory
Bandwidth

68 GB/s

๏ caches > 80% of
CPU area,

๏big energy sink!
๏ application must

have temporal and/
or spatial locality

๏ up to 7 levels
storage hierarchy
(register file, L1, L2,
L3, memory, disk
cache, disk)

Yale is 80 - © W. Najjar

latency mitigation - aka caching

�5

Intel Core-i7-5960x

Launch Date Q3’14

Clock Freq. 3.0 GHz

Cores / Threads 8 / 16

L3 Cache 20 MB

Memory
Channels

4

Memory
Bandwidth

68 GB/s

caches everywhere! reduces average memory latency
assumes locality

๏ caches > 80% of
CPU area,

๏big energy sink!
๏ application must

have temporal and/
or spatial locality

๏ up to 7 levels
storage hierarchy
(register file, L1, L2,
L3, memory, disk
cache, disk)

FPL 2019 - © W. Najjar

where cycles go - cache misses

�6

FPL 2019 - © W. Najjar

where cycles go - cache misses

�6

[DaMoN’13] Tözün, P. et al. OLTP in
wonderland: where do cache misses
come from in major OLTP components?

FPL 2019 - © W. Najjar

where cycles go - cache misses

[TODS’07] Chen, S. et al. Improving Hash Join
Performance through Prefetching

�6

[DaMoN’13] Tözün, P. et al. OLTP in
wonderland: where do cache misses
come from in major OLTP components?

Yale is 80 - © W. Najjar

big data analytics

�7

Yale is 80 - © W. Najjar

big data analytics

�7

BIG data
(x petaB)

Yale is 80 - © W. Najjar

big data analytics

�7

BIG data
(x petaB) +

Yale is 80 - © W. Najjar

big data analytics

�7

BIG data
(x petaB) + hyper

dimensional

Yale is 80 - © W. Najjar

big data analytics

�7

BIG data
(x petaB) + hyper

dimensional

Yale is 80 - © W. Najjar

big data analytics

�7

BIG data
(x petaB) + hyper

dimensional

no data
marshaling

Yale is 80 - © W. Najjar

big data analytics

�7

BIG data
(x petaB) + hyper

dimensional

no data
marshaling

Yale is 80 - © W. Najjar

big data analytics

�7

BIG data
(x petaB) + hyper

dimensional

no data
marshaling sparse data

Yale is 80 - © W. Najjar

big data analytics

�7

BIG data
(x petaB) + hyper

dimensional

no data
marshaling sparse data

Yale is 80 - © W. Najjar

big data analytics

�7

BIG data
(x petaB) + hyper

dimensional

no locality!

no data
marshaling sparse data

FPL 2019 - © W. Najjar �8

You have to know the past to understand the
present

- Carl Sagan

FPL 2019 - © W. Najjar

the latency problem & solutions

�9

✦ latency mitigations, aka “caching”
❖ effective only with spatial/temporal localities

✦ streaming: latency incorporated into pipeline
❖ requires spatial locality

✦ latency masking, aka hardware multithreading
❖ fast context switch after memory access
❖ small thread context
❖ concurrency == outstanding memory requests

FPL 2019 - © W. Najjar

Burton Smith (1941 - 2018)

�10

FPL 2019 - © W. Najjar

Burton Smith (1941 - 2018)

�10

FPL 2019 - © W. Najjar

Burton Smith (1941 - 2018)

�10

❖ main architect of
❖ Denelcor HEP (1982)
❖ Horizon (1985-88) @ IDA SRC
❖ Tera MTA (1999) later Cray XMT

FPL 2019 - © W. Najjar

Burton Smith (1941 - 2018)

�10

❖ main architect of
❖ Denelcor HEP (1982)
❖ Horizon (1985-88) @ IDA SRC
❖ Tera MTA (1999) later Cray XMT

FPL 2019 - © W. Najjar

Burton Smith (1941 - 2018)

�10

❖ main architect of
❖ Denelcor HEP (1982)
❖ Horizon (1985-88) @ IDA SRC
❖ Tera MTA (1999) later Cray XMT

❖ latency masking
❖ = do useful work while waiting for memory = multithreading
❖ switch to a ready process on long-latency I/O operations
❖ => higher throughput
❖ 50 years ago it was I/O latency => multi-programming

FPL 2019 - © W. Najjar

Burton Smith (1941 - 2018)

�10

❖ main architect of
❖ Denelcor HEP (1982)
❖ Horizon (1985-88) @ IDA SRC
❖ Tera MTA (1999) later Cray XMT

❖ latency masking
❖ = do useful work while waiting for memory = multithreading
❖ switch to a ready process on long-latency I/O operations
❖ => higher throughput
❖ 50 years ago it was I/O latency => multi-programming

FPL 2019 - © W. Najjar

Burton Smith (1941 - 2018)

�10

❖ main architect of
❖ Denelcor HEP (1982)
❖ Horizon (1985-88) @ IDA SRC
❖ Tera MTA (1999) later Cray XMT

❖ latency masking
❖ = do useful work while waiting for memory = multithreading
❖ switch to a ready process on long-latency I/O operations
❖ => higher throughput
❖ 50 years ago it was I/O latency => multi-programming

❖ https://www.microsoft.com/en-us/research/people/burtons/

FPL 2019 - © W. Najjar

Tera MTA/Cray XMT

�11

✦ supercomputer, barrel processor
✦ 128 independent threads/processor
✦ 2 inst/cycle issued: 1 ALU, 1 memory
✦ 1 full/empty bit per word insures correct

ordering of memory accesses
✦ longest memory latency: 128 cycles
✦ randomized memory: reduces bank conflicts
✦ processor & memory nodes on a 3D torus

interconnection network
✦ 4096 nodes: sparsely populated

…

registers

datapath

FPL 2019 - © W. Najjar

barrel processor

�12

✦ CPU that switches between threads of execution on
every cycle.
✦ also known as "interleaved" or "fine-grained" temporal multithreading.
✦ each thread is assigned its own program counter and other hardware

registers (architectural state).
✦ guarantee each thread will execute one instruction every n cycles.
✦ n-way barrel processor acts like n separate processors,

✦ each running at ~ 1/n the original speed.

thread
state

thread
state

thread
state

thread
state

thread
state

thread
state

thread
state

thread
state

MEMORY

execution
order

FPL 2019 - © W. Najjar

outline

�13

✦ background
✦ filament execution model
✦ application - SpMV
✦ application - Selection
✦ application - Group by aggregation
✦ conclusion

FPL 2019 - © W. Najjar

what if we take it a step further?

�14

✦ trade bandwidth for latency
✦ custom or semi custom processor/accelerator
✦ no need for large register files and thread state

➡ smaller data path
➡ more processors
➡ more threads per processor (engine or core)
➡ much higher throughput!

✦ suited for large scale irregular applications:
➡ data analytics, databases, sparse linear algebra: SpMV,

SpMM, graph algorithms, bioinformatics

FPL 2019 - © W. Najjar

hardware multithreading

�15

FPL 2019 - © W. Najjar

hardware multithreading

M
EM

O
RY

core

�15

FPL 2019 - © W. Najjar

hardware multithreading

re
ad

y f
ila

men
t

M
EM

O
RY

core

�15

FPL 2019 - © W. Najjar

hardware multithreading

custom
data path

re
ad

y f
ila

men
t

M
EM

O
RY

core

�15

FPL 2019 - © W. Najjar

hardware multithreading

custom
data path

re
ad

y f
ila

men
t

wait
ing f

ila
ment

request M
EM

O
RY

core

�15

FPL 2019 - © W. Najjar

hardware multithreading

custom
data path

re
ad

y f
ila

men
t

wait
ing f

ila
ment

request

re
sp

on
se

M
EM

O
RY

core

�15

FPL 2019 - © W. Najjar

hardware multithreading

custom
data path

re
ad

y f
ila

men
t

wait
ing f

ila
ment

request

thread m
oved to ready queue

re
sp

on
se

M
EM

O
RY

core

�15

FPL 2019 - © W. Najjar

hardware multithreading

custom
data path

re
ad

y f
ila

men
t

wait
ing f

ila
ment

request

thread m
oved to ready queue

re
sp

on
se

M
EM

O
RY

core

Call them filament, to
distinguish from “threads”
Preempting executing filaments
once it access memory
Ready & Waiting Filament
Queues fit 1000s of thread
states
Massive parallelism: ≥ 4,000
waiting filaments

�15

FPL 2019 - © W. Najjar

filament data path

�16

MEMORY

wait queue filament termination

DATA PATH

read

input

data

write

output

data

Yale is 80 - © W. Najjar

filament data path example

�17

Yale is 80 - © W. Najjar

filament data path example

�17

A[i] += B[i] * C[D[i]]; % typical of sparse linear algebra

Yale is 80 - © W. Najjar

filament data path example

�17

A[i] += B[i] * C[D[i]]; % typical of sparse linear algebra

wait queue

MEMORY

DATA PATH

Yale is 80 - © W. Najjar

filament data path example

�17

A[i] += B[i] * C[D[i]]; % typical of sparse linear algebra

wait queue

MEMORY

DATA PATHgenerate i

Yale is 80 - © W. Najjar

filament data path example

�17

A[i] += B[i] * C[D[i]]; % typical of sparse linear algebra

wait queue

MEMORY

DATA PATHgenerate i

Yale is 80 - © W. Najjar

filament data path example

�17

A[i] += B[i] * C[D[i]]; % typical of sparse linear algebra

wait queue

MEMORY

DATA PATH

D[i]

fetch D[i]

generate i

Yale is 80 - © W. Najjar

filament data path example

�17

A[i] += B[i] * C[D[i]]; % typical of sparse linear algebra

wait queue

MEMORY

DATA PATH

D[i]

fetch D[i]

generate i

C[D[i]]

fetch C[D[i]]

Yale is 80 - © W. Najjar

filament data path example

�17

A[i] += B[i] * C[D[i]]; % typical of sparse linear algebra

wait queue

MEMORY

DATA PATH

D[i]

fetch D[i]

B[i]

fetch B[i]

generate i

C[D[i]]

fetch C[D[i]]

Yale is 80 - © W. Najjar

filament data path example

�17

A[i] += B[i] * C[D[i]]; % typical of sparse linear algebra

wait queue

MEMORY

DATA PATH

D[i]

fetch D[i]

B[i]

fetch B[i]

generate i

C[D[i]]

fetch C[D[i]]

write A[i]

∑

FPL 2019 - © W. Najjar

a very important

�18

FPL 2019 - © W. Najjar

a very important

�18

and often forgotten Little law

FPL 2019 - © W. Najjar

a very important

�18

S λ

a queueing system

and often forgotten Little law

FPL 2019 - © W. Najjar

a very important

�18

S λ

a queueing system

and often forgotten Little law

❖ N	=	customers	in	system,	w	=	wait	time	
❖ ∀	distribution	of	λ	and	S	(service	time)

FPL 2019 - © W. Najjar

a very important

�18

S λ

a queueing system

and often forgotten Little law

❖ N	=	customers	in	system,	w	=	wait	time	
❖ ∀	distribution	of	λ	and	S	(service	time)

N = λ.w

FPL 2019 - © W. Najjar

a very important

�18

S λ

a queueing system

and often forgotten Little law

❖ N	=	customers	in	system,	w	=	wait	time	
❖ ∀	distribution	of	λ	and	S	(service	time)

N = λ.w

B

L C = L.B

FPL 2019 - © W. Najjar

a very important

�18

❖ L	=	pipeline	latency		
❖ B	=	memory	bandwidth	
❖ C	=	parallelism

S λ

a queueing system

and often forgotten Little law

❖ N	=	customers	in	system,	w	=	wait	time	
❖ ∀	distribution	of	λ	and	S	(service	time)

N = λ.w

B

L C = L.B

FPL 2019 - © W. Najjar

a very important

�18

❖ L	=	pipeline	latency		
❖ B	=	memory	bandwidth	
❖ C	=	parallelism

S λ

a queueing system

and often forgotten Little law

❖ N	=	customers	in	system,	w	=	wait	time	
❖ ∀	distribution	of	λ	and	S	(service	time)

N = λ.w

B

L C = L.B

high bandwidth + hyper-pipelining —> massive parallelism

FPL 2019 - © W. Najjar

regular vs. irregular applications

 19

FPL 2019 - © W. Najjar

regular vs. irregular applications

 19

✦Regular Applications
❖ Have good temporal and spatial locality
❖ Caches are well suited for these types of applications

FPL 2019 - © W. Najjar

regular vs. irregular applications

 19

✦Regular Applications
❖ Have good temporal and spatial locality
❖ Caches are well suited for these types of applications

✦Irregular Applications
❖ Have poor temporal and spatial locality
❖ Caches are NOT well suited for these types of applications
❖ Multithreading is an alternative

• Can mask long memory latencies
• Needs high bandwidth to support a large number of concurrent threads

FPL 2019 - © W. Najjar

regular vs. irregular applications

 19

✦Regular Applications
❖ Have good temporal and spatial locality
❖ Caches are well suited for these types of applications

✦Irregular Applications
❖ Have poor temporal and spatial locality
❖ Caches are NOT well suited for these types of applications
❖ Multithreading is an alternative

• Can mask long memory latencies
• Needs high bandwidth to support a large number of concurrent threads

✦Won’t increasing the cache size mitigate latency and improve
performance?

FPL 2019 - © W. Najjar

taxonomy of irregular applications

�20

FPL 2019 - © W. Najjar

taxonomy of irregular applications

�20

FPL 2019 - © W. Najjar

taxonomy of irregular applications

�20

dense matrix

FPL 2019 - © W. Najjar

taxonomy of irregular applications

�20

dense matrix sparse matrix

FPL 2019 - © W. Najjar

taxonomy of irregular applications

�20

dense matrix sparse matrix

fixed degree BFS

FPL 2019 - © W. Najjar

taxonomy of irregular applications

�20

dense matrix sparse matrix

fixed degree BFS variable degree BFS

FPL 2019 - © W. Najjar

Convey HC-2ex architecture

�21

Convey HC-2ex

Clock Freq. 150 MHz

Memory Controllers 8

Memory Channels 16 / FPGA

Memory Bandwidth 76.8 GB/s

Outstanding Requests ~ 500 Requests
/ Channel

Data bus width 8 Byte

‣ multi bank memory architecture

‣ randomized memory allocation

FPL 2019 - © W. Najjar

outline

�22

✦ background
✦ filament execution model
✦ application - SpMV
✦ application - Selection
✦ application - Group by aggregation
✦ conclusion

FPL 2019 - © W. Najjar

selection query

�23

✦ selection is a database operator
‣ selects all rows (tuples) in a relation (table)
‣ that satisfy a set of conditions
‣ expressed as a logical expression on the attributes
‣ attributes (columns) are elements of a tuple
‣ e.g. ((a1 > 10) ∧ (a2>0)) ∨ ((a10<100) ∧ (a13<0))

✦ a very common database operator
‣ poor locality
‣ relation can be store row or column wise

FPL 2019 - © W. Najjar

selection example

�24

FPL 2019 - © W. Najjar

selection example

�24

relation example
row/

attribute a1 a2 a3 a4 a5 a6

0 5 -70 CA 1992 0 12
1 10 70 CO 1990 1 4
2 15 -10 AZ 2001 1 24
3 20 3 NV 1989 0 18

FPL 2019 - © W. Najjar

selection example

�24

relation example
row/

attribute a1 a2 a3 a4 a5 a6

0 5 -70 CA 1992 0 12
1 10 70 CO 1990 1 4
2 15 -10 AZ 2001 1 24
3 20 3 NV 1989 0 18

FPL 2019 - © W. Najjar

selection example

�24

relation example
row/

attribute a1 a2 a3 a4 a5 a6

0 5 -70 CA 1992 0 12
1 10 70 CO 1990 1 4
2 15 -10 AZ 2001 1 24
3 20 3 NV 1989 0 18

query example:
query A: (a5=1) ∨ (a3 = NV) ∨ [(a1<20)∧(a2>0)]

query B: (a2<0) ∧ (a3=CA) ∧ (a5=0)

FPL 2019 - © W. Najjar

selection example

�24

relation example
row/

attribute a1 a2 a3 a4 a5 a6

0 5 -70 CA 1992 0 12
1 10 70 CO 1990 1 4
2 15 -10 AZ 2001 1 24
3 20 3 NV 1989 0 18

query example:
query A: (a5=1) ∨ (a3 = NV) ∨ [(a1<20)∧(a2>0)]

query B: (a2<0) ∧ (a3=CA) ∧ (a5=0)

FPL 2019 - © W. Najjar

selection example

�24

relation example
row/

attribute a1 a2 a3 a4 a5 a6

0 5 -70 CA 1992 0 12
1 10 70 CO 1990 1 4
2 15 -10 AZ 2001 1 24
3 20 3 NV 1989 0 18

query example:
query A: (a5=1) ∨ (a3 = NV) ∨ [(a1<20)∧(a2>0)]

query B: (a2<0) ∧ (a3=CA) ∧ (a5=0)

qualifying rows
row/
query qA qB

0 N Y
1 Y N
2 Y N
3 N N

FPL 2019 - © W. Najjar

selection example (2)

�25

qA predicate control block
condition action

attri
bute op const if T if F

a5 = 1 Terminate T a3

a3 = NV Terminate T a5
a1 < 20 a2 Terminate F

a2 > 0 Terminate T Terminate F

qB predicate control block
condition action

attri
bute op const if T if F

a2 < 0 a3 Terminate F

a3 = CA a5 Terminate F
a5 = 0 Terminate T Terminate F

query example:
query A: (a5=1) ∨ (a3 = NV) ∨ [(a1<20)∧(a2>0)]

query B: (a2<0) ∧ (a3=CA) ∧ (a5=0)

predicate control block (PCB) encodes
the selection logic:

‣ early termination (T or F)
‣ only the required attributes are

fetched (no caching)

FPL 2019 - © W. Najjar

selection CDFG

�26

Explanations:

• PCB: process control block
(stored locally on the FPGA)

• The state of each filament is
the current index into the PCB

• Multiple queries can be
executed simultaneously on the
same relation, the state
becomes the (PCB #, index)

• data is returned from memory
in the order fetched, on one
channel

Initialize filament
• fetch offset of 1st attribute

from PCB

• fetch 1st attribute from

memory

Continue filament
• fetch offset of next

attribute from PCB

• fetch next

attribute from
memory

w
ai

t q
ue

ue

evaluate
condition

from PCB

Write i as
qualifying
row

Terminate TContinue

From memory

row i
row i+1

….
….

ne
w

 jo
bs

 q
ue

ue

FPL 2019 - © W. Najjar

experimental evaluation

�27

Device Make & Model
Clock
(MHz)

Cores
Memory

Size (GB)

Memory
Bandwidth,

GB/s
CPU Intel Xeon E5-2643 3,300 8 128 51.2
GPU Nvidia Titan X 1,500 3,584 12 480.0
FPGA Virtex6 – 760 150 64 64 76.8

‣ Each row consists of 8 fixed size 64-bit columns.
‣ Query selectivity was varied from 0% to 100% (0%: no

row qualifies, 100% all rows qualify)
‣ Dataset varied from 8M – 128M.
‣ Results were obtained on the following platforms:

FPL 2019 - © W. Najjar

bandwidth utilization - selection

�28

0
20
40
60
80

100

0% 10% 50% 100%

MTP

Ba
nd

w
id

th
 U

til
iza

tio
n

(%
)

k=1 k=2 k=3 k=4

k=5 k=6 k=7 k=8

0% 10% 50% 100%

GPU

k=1 k=2 k=3 k=4
k=5 k=6 k=7 k=8

0% 10% 50% 100%

CPU SIMD

k=1 k=2 k=3 k=4
k=5 k=6 k=7 k=8

0% 10% 50% 100%

CPU SCALAR

k=1 k=2 k=3 k=4
k=5 k=6 k=7 k=8

Selectivity
FILAMENT

filament has the highest bandwidth utilization

FPL 2019 - © W. Najjar

predicate evaluation/sec

�29

0% 10% 50% 100%

CPU SCALAR

k=1 k=2 k=3
k=4 k=5 k=6
k=7 k=8 Peak

0% 10% 50% 100%

CPU SIMD

k=1 k=2 k=3
k=4 k=5 k=6
k=7 k=8 Peak

0% 10% 50% 100%

GPU

k=1 k=2 k=3
k=4 k=5 k=6
k=7 k=8 Peak

Selectivity
0.1

1

10

100

1000

10000

0% 10% 50% 100%

MTP

Bi
lli

on
 P

re
di

ca
te

s/
se

c
(lo

g
sc

al
e)

k=1 k=2 k=3
k=4 k=5 k=6
k=7 k=8 Peak

FILAMENT

peak = theoretical max throughput

FPL 2019 - © W. Najjar

runtime (msec)

�30

0
50

100
150
200
250
300

0% 10% 50% 100%

MTP

Ru
nt

im
e

(m
s)

k=1 k=2 k=3 k=4

k=5 k=6 k=7 k=8

0% 10% 50% 100%

CPU SCALAR

k=1 k=2 k=3 k=4
k=5 k=6 k=7 k=8

0% 10% 50% 100%

CPU SIMD

k=1 k=2 k=3 k=4
k=5 k=6 k=7 k=8

0% 10% 50% 100%

GPU

k=1 k=2 k=3 k=4
k=5 k=6 k=7 k=8

Selectivity
FILAMENT

at only 150 MHz

FPL 2019 - © W. Najjar

TPC-H benchmark

�31

0

2

4

6

8

CPU Scalar CPU SIMD MTP GPU

T
hr

ou
gh

pu
t

(B
ill

io
n

Tu
pl

es
/s

)

0

10

20

30

40

50

CPU Scalar CPU SIMD MTP GPU

T
hr

ou
gh

pu
t (

M
Tu

pl
es

/s
) p

er
B

an
dw

id
th

(G
B

/s
)

‣ Query Q6 for our evaluation because all select
conditions apply on the columns of one table and
has 5 predicates

‣ Query Q6:
 SELECT * FROM lineitem
 WHERE l_shipdate>= date ‘1995-01-01’ AND
 l_shipdate<date ‘1996-01-01’ AND
 l_discount between 0.04 AND 0.06 AND
 l_quantity<24;
‣ Lineitem table has 16 columns
‣ Measured selectivity is 1.91%
‣ CPU and GPU access common attributes only

once.
‣ MTP treats them as two independent

attributes.

FPL 2019 - © W. Najjar

TPC-H Evaluation

�32

‣ Memory Fetches: number of columns fetched for evaluation
‣ Avg Evaluations per Row: predicate comparisons per row
‣ Effective Bandwidth: total size of the “Lineitem” table processed per unit

time / theoretical peak bandwidth, prescribed in [1].
‣ Peak Bandwidth Utilization: actual amount of data fetched per unit time /

theoretical peak bandwidth

[1]	B.	Sukhwani,	et	al.	Database	Analytics	Acceleration	Using	FPGAs.		Parallel	Architectures	and	Compilation	Techniques,	2012.

CPU
Scalar

CPU
SIMD GPU Filament

Memory Fetches 100% 18.75% 18.75% 11.4%
Avg Evaluations (per Row) 3 3 3 1.83
Effective Bandwidth Speedup 0.47 3.44 2.01 6.13
Peak Bandwidth Utilization 47.6% 61.2% 36.6% 70.3%

FPL 2019 - © W. Najjar

outline

�33

✦ background
✦ filament execution model
✦ application - SpMV
✦ application - Selection
✦ application - Group by aggregation
✦ conclusion

FPL 2019 - © W. Najjar

synchronization in irregular applications

�34

FPL 2019 - © W. Najjar

synchronization in irregular applications

�34

dense matrix sparse matrix

fixed degree BFS variable degree BFS

FPL 2019 - © W. Najjar

synchronization in irregular applications

�34

dense matrix sparse matrix

fixed degree BFS variable degree BFS

inter-thread
synchronization

FPL 2019 - © W. Najjar

synchronization in irregular applications

�34

dense matrix sparse matrix

fixed degree BFS variable degree BFS

inter-thread
synchronization

not needed

FPL 2019 - © W. Najjar

synchronization in irregular applications

�34

dense matrix sparse matrix

fixed degree BFS variable degree BFS

inter-thread
synchronization

not needed

needed

FPL 2019 - © W. Najjar

synchronizing between threads

�35

FPL 2019 - © W. Najjar

synchronizing between threads

�35

✦Non-deterministic # threads
❖ requires inter-thread synchronization

➡ only FPGA platforms that supports in-memory
synchronization: Convey MX

➡ Heavy overhead

FPL 2019 - © W. Najjar

synchronizing between threads

�35

✦Non-deterministic # threads
❖ requires inter-thread synchronization

➡ only FPGA platforms that supports in-memory
synchronization: Convey MX

➡ Heavy overhead
✦ Move the synchronization on-chip

❖ use a CAM to cache recently seen nodes: reduces
number of memory accesses

❖ map threads (nodes) to engines deterministically
❖ deal with load balancing

FPL 2019 - © W. Najjar

CAMs as synchronizing caches

�36

FPL 2019 - © W. Najjar

CAMs as synchronizing caches

�36

✦ CAM caches address of all pending memory accesses
❖ all accesses are checked in CAM first

• on miss, address is inserted into CAM
• on hit, access is deferred
• read hits get the returned value
• write hits are deferred => strict serialization

FPL 2019 - © W. Najjar

CAMs as synchronizing caches

�36

✦ CAM caches address of all pending memory accesses
❖ all accesses are checked in CAM first

• on miss, address is inserted into CAM
• on hit, access is deferred
• read hits get the returned value
• write hits are deferred => strict serialization

✦ some writes need not be done in memory
❖ e.g. aggregation: increment count locally ==> reduced traffic to memory
❖ very effective on some workloads

FPL 2019 - © W. Najjar

CAMs as synchronizing caches

�36

✦ CAM caches address of all pending memory accesses
❖ all accesses are checked in CAM first

• on miss, address is inserted into CAM
• on hit, access is deferred
• read hits get the returned value
• write hits are deferred => strict serialization

✦ some writes need not be done in memory
❖ e.g. aggregation: increment count locally ==> reduced traffic to memory
❖ very effective on some workloads

✦each CAM guards a slice of the address space
❖ partitioning of the address space
❖ deal with load balancing

FPL 2019 - © W. Najjar

in-memory aggregation

�37

✦ A crucial operation for any OLAP workload
✦ Aggregation is challenging to implement in hardware logic

❖ Not all tuples will create a new node (e.g. update existing node)
❖ Every tuple reads and writes to the table

✦ Content Addressable Memories (CAMs)
❖ Used to enforce memory locks and merge jobs together
❖ Splits nodes among multiple hash tables, need to be merged

1 123
Key Value

2 42
1 314

2 96
3 7

Relation	R

1 2
Key Count

3 1
2 2

Agg	Relation

Halstead	et	al.	FPGA-based	Multithreading	for	In-Memory	Hash	Joins,	in	7th	Biennial	Conf.	on	Innovative	Data	Systems	Research	
(CIDR’15),	Jan.	4-7,	2015,	Asilomar,	CA.

FPL 2019 - © W. Najjar

thread control flow graph

�38

FPL 2019 - © W. Najjar

thread control flow graph

�38

Two CAMs:
✦one used to synchronize the
access to memory

✦one to cache the value of the
aggregate

FPL 2019 - © W. Najjar

aggregation engine

�39

✦ CAM: Filter Keys
❖ Jobs with the same

key are merged
✦ CAM: HT Lock

❖ Locks individual hash
table locations

✦ Linked List
❖ Read through to find

match
❖ Update/Insert node

✦ Design is limited by the
128 CAM location

FPL 2019 - © W. Najjar

merging operation

�40

✦ Mapping of nodes to engines done statically
❖ bandwidth between FPGAs is not sufficient
❖ may becomes the design bottleneck

✦ Relation keys can be in multiple nodes in separate hash
tables
❖ keys are not duplicated within a hash table

✦ After the job is completed
❖ multiple hash table must be merged: a streaming operation
❖ can be done on FPGA:

➡ stream list chains for each hash table bucket
➡ merge matching keys together

FPL 2019 - © W. Najjar

concurrent FPGA engines

�41

✦ target platform: Convey HC-2ex
❖ 4 Xilinx Virtex 6 FPGAs x 16 Memory channels/FPGA

✦ two designs
❖ replicated cores (4 channels/core, 4 cores/FPGA)
❖ multiplexed cores (2.5 channels/core, 6 cores/FPGA) - write

channel shared by 2 cores

Main	Memory

..Memory	channels..1 2 15 16

Engine1 Engine4

Replicated	Engine	Design

…

16

Main	Memory

..Memory	channels..1 2 15

Engine1

Multiplexed	Engine	Design

Engine2

Multiplexed	Engines

…

FPL 2019 - © W. Najjar

fine v/s coarse-grain locking

�42

FPL 2019 - © W. Najjar

fine v/s coarse-grain locking

�42

key

#

key

#

hash table

key

#

key

#

key

#

key

#

FPL 2019 - © W. Najjar

fine v/s coarse-grain locking

�42

✦ coarse-grain
❖ lock on hash table entry
❖ fewer locks ==> less

parallelism
❖ lower pressure on

synchronizing CAM

key

#

key

#

hash table

key

#

key

#

key

#

key

#

FPL 2019 - © W. Najjar

fine v/s coarse-grain locking

�42

✦ coarse-grain
❖ lock on hash table entry
❖ fewer locks ==> less

parallelism
❖ lower pressure on

synchronizing CAM

key

#

key

#

hash table

key

#

key

#

key

#

key

#

FPL 2019 - © W. Najjar

fine v/s coarse-grain locking

�42

✦ coarse-grain
❖ lock on hash table entry
❖ fewer locks ==> less

parallelism
❖ lower pressure on

synchronizing CAM

key

#

key

#

hash table

key

#

key

#

key

#

key

#

✦ fine-grain lock
❖ lock on linked list entry
❖ more parallel filaments
❖ higher pressure on CAM

FPL 2019 - © W. Najjar

fine v/s coarse-grain locking

�42

✦ coarse-grain
❖ lock on hash table entry
❖ fewer locks ==> less

parallelism
❖ lower pressure on

synchronizing CAM

key

#

key

#

hash table

key

#

key

#

key

#

key

#

who wins?

✦ fine-grain lock
❖ lock on linked list entry
❖ more parallel filaments
❖ higher pressure on CAM

FPL 2019 - © W. Najjar

experimental evaluation FGL v/s CGL

�43

1

2

4

8

16

32

64

2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰ 2²²

Th
ro

ug
hp

ut
 (M

Tu
pl

es
/s

/G
B/

S)

Relation Cardinality

Coarse Grain Locking - Uniform dataset FGL - Uniform dataset

Coarse Grain Locking - Heavy hitter dataset FGL - Heavy Hitter dataset

Coarse Grain Locking - Moving Cluster dataset FGL - Moving Cluster dataset

fine-grain lock

coarse-grain lock

✦ fine-grain ~4x higher throughput
✦ note: constant throughput v/s relation cardinality

FPL 2019 - © W. Najjar

comparison to software

�44

✦ 5 aggregation algorithms
❖ Independent Tables
❖ Shared Table
❖ Partition & Aggregate
❖ Hybrid Table
❖ Partition with Local Aggregation Table

[ICDE’13]	Balkesen,	C.	et	al.	Main-memory	Hash	Joins	on	Multi-core	CPUs:	Tuning	to	the	underlying	hardware.		
[VLDB’07]	J.	Cieslewicz	et	al.	Adaptive	Aggregation	on	Chip	Multiprocessors.	
[DAMON’11]	Y.	Ye	et	al.	Scalable	aggregation	on	multicore	processors	

Hardware-oblivious	[VLDB’07]

Hardware-conscious	[VLDB’07]

Hybrid	[DAMON’11]

FPL 2019 - © W. Najjar

experimental evaluation

�45

✦ Software Approaches
❖ Individual Table
❖ Shared Table (atomic)
❖ Hybrid Table
❖ Partitioning
❖ PLAT

✦ Datasets
❖ Uniform, Zipf 0.5, Heavy Hitter,

Moving Cluster, Self Similar

✦ 8M to 64M tuples/
benchmarks

✦ 1K to 4M cardinality

Hardware Region

FPGA board Virtex-6 760

FPGAs 2

Clock Freq. 150 MHz

Engines per FPGA 4 / 3

Memory Channels 32

Memory Bandwidth
(total)

38.4 GB/s

Software Region

CPU Intel Xeon
E5-2643

CPUs 1

Cores / Threads 4 / 8

Clock Freq. 3.3 GHz

L3 Cache 10 MB

Memory Bandwidth
(total)

51.2 GB/s

FPL 2019 - © W. Najjar

uniform workload

�46

0

100

200

300

400

500

600

700

2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰ 2²²

Th
ro

ug
hp

ut
 (M

Tu
pl

es
/s

ec
)

Relation Cardinality

Shared Table Hybrid Aggregation Multiplexed FPGA Independent Tables
Partition & Aggregate PLAT FGL CAM64 FPGA FGL CAM128 FPGA

Uniform - 256 M tuples

filament

CPU 5x

FPL 2019 - © W. Najjar

0

200

400

600

800

1000

1200

2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰ 2²²

Th
ro

ug
hp

ut
 (M

Tu
pl

es
/s

ec
)

Relation Cardinality

Shared Table Hybrid Aggregation Multiplexed FPGA Independent Tables
Partition & Aggregate PLAT FGL CAM64 FPGA FGL CAM128 FPGA

heavy-hitter workload

�47

Heavy Hitter - 256 M tuples

filament

CPU

10x

FPL 2019 - © W. Najjar

0

200

400

600

800

1000

1200

2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰ 2²²

Th
ro

ug
hp

ut
 (M

Tu
pl

es
/s

ec
)

Relation Cardinality

Shared Table Hybrid Aggregation Multiplexed FPGA Independent Tables
Partition & Aggregate PLAT FGL CAM64 FPGA FGL CAM128

self-similar workload

�48

SelfSimilar — 256 M tuples

filament

CPU
10x

FPL 2019 - © W. Najjar

bandwidth utilization

�49

✦ FPGA implementation achieves much higher memory
bandwidth utilization

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

2¹⁰ 2¹² 2¹⁴ 2¹⁶ 2¹⁸ 2²⁰ 2²²

Ra
tio

 o
f A

vg
/P

ea
k

Ba
nd

w
id

th

Relation Cardinality

16M software 32M software 64M software 128M software 16M FPGA 32M FPGA 64M FPGA 128M FPGA

FPL 2019 - © W. Najjar

outline

�50

✦ background
✦ filament execution model
✦ application - SpMV
✦ application - Selection
✦ application - Group by aggregation
✦ conclusion

FPL 2019 - © W. Najjar

other results, past and on-going

�51

✦ Big data is: BIG and multi-dimensional
❖ access patterns to data are extremely irregular
❖ no ideal storage scheme - constant poor locality

✦Other applications
❖ string matching, hash join, group by aggregation,

selection, outer joins, sorting

✦Challenges
❖ inter-filament synchronization
❖ dynamic load re-balancing (at run time)

FPL 2019 - © W. Najjar

publications

�52

✦ P.	Budhkar,	I.	Absalyamov,	V.	Zois,	S.	Windh,	W.	A.	Najjar	and	V.	J.	Tsotras.	Accelerating	In-
Memory	Database	Selections	Using	Latency	Masking	Hardware	Threads,	in	ACM	TACO,	2019.	

✦ I.	Absalyamov,	R.	J.	Halstead,	P.	Budhkar,	W.	A.	Najjar,	S.	Windh,	V.	J.	Tsotras.	FPGA-
Accelerated	Group-by	Aggregation	Using	Synchronizing	Caches.	12th	Int.	Workshop	on	Data	
Management	on	New	Hardware	(DaMoN	2016),	Co-located	with	ACM	SIGMOD/PODS,	San	
Francisco,	USA,	June	27,	2016.	

✦ S.	Windh,	P.	Budhkar	and	W.	A.	Najjar.	CAMs	as	Synchronizing	Caches	for	Multithreaded	
Irregular	Applications	on	FPGAs.	ICCAD	2015:	331-336	

✦ R.	J.	Halstead,	I.	Absalyamov,	W.	A.	Najjar	and	V.	J.	Tsotras.	FPGA-based	Multithreading	for	In-
Memory	Hash	Joins,	in	7th	Biennial	Conference	on	Innovative	Data	Systems	Research	(CIDR	
15),	January	4-7,	2015,	Asilomar,	California.	

✦ E.	B.	Fernandez,	J.	Villarreal,	S.	Lonardi,	and	W.	A.	Najjar.	FHAST:	FPGA-based	acceleration	of	
Bowtie	in	hardware,	in	IEEE/ACM	Trans.	on	Computational	Biology	and	Bioinformatics,	#	99,	
Feb.	2015.		

✦ R.	J.	Halstead,	W.	A.	Najjar	and	O.	Huseini.	SpVM	Acceleration	with	Latency	Masking	Threads	
on	FPGAs.	Technical	Report	UCR-CSE-2014-04001	

http://www.cs.ucr.edu/~najjar/publications.html

FPL 2019 - © W. Najjar

conclusion

�53

✦ advantages of filament execution
‣ very small state allows

‣ fast context switching between filaments
‣ small storage for waiting queues

‣ masking the latency of memory and non volatile storage
‣ no reliance on locality, no caches
‣ lower energy consumption

✦ limitations: custom or semi-custom
accelerators

FPL 2019 - © W. Najjar �54

questions?

thank you!

