ADVANCING UBIQUITOUS FPGA USE IN
HPC AND ALGORITHMIC AGCELERATION

Algorithmic Acceleration Architect
Networking and Custom Logic Group

LEGAL NOTICES AND DISCLAIMERS

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on
system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs
and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

This document contains information on products, services and/or processes in development. Allinformation provided here is subject to change without notice. Contact your
Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. The products described
may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on
request.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether
referenced data are accurate.

© 2019 Intel Corporation. Intel, the Intel logo and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos. Other names and brands may be claimed as the property of others.

Networking and Custom Logic Group

Heterogeneous computing, FPGA in data centres
Platform level and Architectural differentiation

AGENDA Obstacles in the way of Adoption

An acceleration scenario

How to bring ease of use with High level Design

Networking and Custom Logic Group

MY JOURNEY WITH FPGA

HW engineering background

Started as an IP designer (RTL = automation)

Communications Systems designer (RTL, DSP Builder Blockset on Simulink)
DSP Specialist (DSP Builder, HLS, OpenCL)

Acceleration Specialist (HLD Tools, Optimization)

Acceleration Architect (HLD Tools, Optimizations, Platforms)

Networking and Custom Logic Group

1 /-

i /
| ‘)
‘
f ‘ I
7 L 4%

OFlLta By w;re/e(\// |

Peta Flops, 1 oY
)nds away from every person? -~ °
gt 2485 oM Y PREET

/A
/

e —— =

Networking and Custom Logic Group

DIVERSE WORKLOADS REQUIRE

The future is a diverse mix of scalar,

vector, matrix, and spatial architectures

deployed in CPU, GPU, Al, FPGA and other
accelerators

SCALAR VECTOR MATRIX SPATIAL

- _J
'

SUM$

Networking and Custom Logic Group

]

‘7
|
|

LT

Race to expand applicability
Best of many worlds

H | e T

Built-in accelerators
Chiplets (Al, memory, processors, interfaces ...)

Chipsets

Various levels of interconnects

Delivering more performance and usability

Networking and Custom Logic Group

PlATFﬂRM | ARCHITECTURE DIFFERENTIATION

rrrrrrrrrrrrrrrrrrr

MICROSOFT CATAPULT ARCHITECTURE

Interconnected FPGAs form a
separate plane of computation

Can be managed and used

= independently from the CPU
-

Hardware acceleration plane

Gen3 x8 Gen3 2x8

HE Bl
ki Lol
ranking = FPGA =

Web search

o
X
>
<

QSFP QSFP QSFP

Traditional software (CPU) server plane

Networking and Custom Logic Group

DATA CENTRE USE MODELS

Storage Acceleration

- Cryptography
- Compression
- Indexing
- Key Value Store ©
Storage
Interconnects N -

PClI - Data Flow P
QPI/UPI -
-X®, GenZ®, OpenCAPI® -
CXL -

10

Control Plane

- Management

- Security

- Protocol bridging

> Storage

FPGAs enables platform-level and architectural differentiation

NetworNiig ol v CUS Ul it LU e Wi Oy

WHAT IS CXL? OO s
Card \ Card
- CXL is an alternate protocol that runs across

the standard PCle physical layer X16 Connector

PCle channel
SERDES
Connector
etc.

. CXL uses a flexible processor port that can
auto-negotiate to either the standard PCle
transaction protocol or the alternate CXL
transaction protocols

- First generation CXL aligns to 32 Gbps PCle
Gen5 Processor

Networking and Custom Logic Group

EASE OF MEMORY ACGESS WITH CXL

Cache coherent access to
data from CPU/FPGA

= Removes capacity
problems for big data
processing

= Host access to memory
objects through native
methods

Networking and Custom Logic Group

Accelerators with
Memory

Usages:

- GPU, FPGA

- Dense Computation
Protocols:

. CXL.io

. CXL.cache

. CXL.memory Accelerator

Processor

Memory Buffers

Usages:

- Memory BW expansion
- Memory capacity expansion
- 2LM

Protocols:

. CXL.io
. CXL.mem

COMPREHENSIVE ACCELERATION STACK

Applications/
Orchestration

Vertical Software

Frameworks/Libs
(DL, Networking,
Genomics, etc.)

Intel Xeon FPGA
Acceleration Libraries

@ b Azure Stack VIMWware n
@ openstack”

(l@ Rack Scale Design ceph

Deep Learning, Networking, Analytics, etc.

¥ theano C(affe @hesbep

Tensorl

Intel®° DL Deployment Toolkit

Intel® DAAL
Intel® MKL

Intel° MKL-DNN) DPDK

Common Infrastructure
v Simplify FPGA
programming model

FPGA HW & SW Open Programmable Acceleration Engine
Tool Chains (OPAE Software API)
Operating Systems

Common Linux kernel driver, tools and software
programming layer, HLS/HDL FPGA design tools

OS Enablement: Linux, Windows, ESXi,

FPGA Interface Loadable accelerator image
Manager (FIM) &

IP Libraries: Developed in-house and from
third parties

Hardware

Networking and Custom Logic Group

FPGA Platforms (Programmable Acceleration Cards) |

0BSTACLES FOR ADOPTION

More than our fair share

Networking and Custom Logic Group

NOT INVENTED HERE (NIH) SYNDROME

Blackbox designs not always fulfil the needs.
= Sensitivity on owning the IP.

= Multiple customizations for different use
cases.

» |ncremental improvements

— RTL vs automation
= Complexities in licensing models
Empower the SW developer with
= SW programmability

= QOptimized library modules

Networking and Custom Logic Group

BENCHMARKING ASKS

Expectations vary hugely.

= Typical FPGA account:

— How do you compare against RTL?"

= Typical HPC account:

— Show us your results on
Gromacs...OpenFoam, LAMMPS...”

— ... Linpack? .. FFT? SGEMM?

— What can you show?

Simple functions may be misleading:

= Functions with dedicated ASIC blocks in
CPU/GPU

Small parts of large applications are also
misleading.

= Area estimates for a given performance
multiplier.

= Bigger/deeper pipeline changes a lot of
assumptions

Bigger/deeper pipe with data streaming from one block to next
provides much higher differentiation

Networking and Custom Logic Group

ENABLING SW COMMUNITY - ADOPTION

» Performance alone is not enough for
.\ — Why?
= Development environment
~ ' — Debugging, profiling
\ A — IDE

= Ease of usein:
— Host code modifications,
— Data transfers

— Getting insightful feedback from compiler

Networking and Custom Logic Group intel" l 17

ENABLING THE BROAD BASE - TRICKLE-DOWN STRATEGY

~— Experts

Building optimized
PRIMITIVES and LIBRARIES
that are re-used by the broad base.

Direct Programming

+— Experienced developers

API Programming

Broad user base Integrating and using pre-built

PRIMITIVES and LIBRARIES
in acceleration workloads.

Not all user personas will be using HLD Tools for development.

Networking and Custom Logic Group

AN ACGELERATION SCENARIO

BENCHMARKING | DEVELOPMENT STEPS

Accelerate
while (cond) {

some_data_manipulations;
func1(); = While loop

= func1();

some_more _data_manipulations;
func2();

func3();
cond_calculations;

}

Networking and Custom Logic Group

ACCELERATOR OPTIMIZATION METRICS

System Acceleration Metrics

Time spent in an un-accelerated system A

Unaccelerated Systerr

II
(7}

_|
>
(7))

Time spent in an accelerated system Te T,

T;

Time spent in main application, running on the host

(excluding un-accelerated function) System Acceleration A

Time spent in un-accelerated function Tas Th T

Taf

Time spent in communication between the host and \

|
Accelerated System

(o] —h =2

accelerator

-

Q
=1

Time spent executing accelerated function

System Acceleration = Tg/T g

Networking and Custom Logic Group

FUNC1() CONSIDERATIONS

Where is the input data coming from?
What is the CPU execution time.

start_timer(); Any other benchmarks (i.e. GPU)?
func1();

finish._timer(; Has func1() been optimized for CPU

execution? (vectorized, multi-thread
etc)?

Networking and Custom Logic Group

ACCELERATOR OPTIMIZATION METRICS

System Acceleration Metrics

Unaccelerated System
|

Time spent in an un-accelerated system ‘ !
Ths Time spent in an accelerated system Ts Th "
T Time spent in main application, running on the host System Acceleration A
h (excluding un-accelerated function)
. . : TAS Th Tc Taf
Time spent in un-accelerated function
Time spent in communication between the host and
< accelerator (Tctrl + Tdata
() Tctrl + Tdata Taf
Time spent executing accelerated function
“ System Acceleration = T¢/T,¢ Toq| Toaa ¥ Tat

You are always asked to report T_ + T,

In most cases, you are in control of T, ., and T,

Networking and Custom Logic Group

INTEL VTUNE SHOWS CPU/FPGA INTERACTION

Intel® VTune™ Amplifier — Performance Profiler

() CPUFPGA Interaction (preview) CPUFPGA nteraction = O

Asalysss Contguration Collectionlog Summary Scttom.up
600ms
[

Platform

1100ms

TSt:R\I 798 3,39‘7“ 050['“1 100l0m$ 105?\'1'\1

»
& ' |
o | ik 11 | | | 1 i1 | |
£ :
g o escamaserane R IR E -1 AR AL R
E
| %
£ (5251100011 d hosy (M L m i i
4 11 [1]] 181 R A YNV I il 1 0 TR | |
pinbia (TI0- 5997) (sshe-S110 (001) ... hosy) (MO: 5930)
|| Comtext Swilches
Stant: 798 #57ms Duration: 151 S0Tusec
pinbin (TID: 5956) CPU: cpu_©
11 Reasen: Synchionization
host (MD: 5999) Context Swilches
LISt 758 857ms Duration 151 00Tusec |
CPU. cpu 9
{sep) (MD-5977) Reasen Synchronzation
LCPU Time
(Anaysis Helpen) (M0 5262) B9 &%
FPGA Unicasce AL B b LA IAG VAL UMD ALY AL LG AL AL DAL LD AR LER A AL AL B A LLAALL LU
CPU Time
805515 °
PCle Bandwion packag
T - W ,
& 2470
§ » package 1 —— —— . __
© \
I3 ey 24707
I > package

Networking and Custom Logic Group

INTELVTUNE AMPLIFIER 2018
s 7

 Computng Quewe

v Compating Task
iSiTransie
 Compuning Queus
Transte
Synchroncaton
« Thread v
v P unnng
 Context Switches
[Preempion
[Pyntteoncation
v aCPU Time
o[MserTasks
—how
" =Computng Task
' FPCA Usizason
Comgutng Task Count
aComoute
Synchronadon
o Transier
v CPU Time
TP Time
 PCle Bandwidv: pack
 Average Banowidth,
v s Read
' Ve
v ~Total, MB/sec
o DHLAM fLandusdty

FUNC1() CONSIDERATIONS

Ways to get performance in your
func1() accelerator

_ = |nstantiation
start_timer();

func1(); = Vectorization

finish_timer(); = Reducing data transfer and control

overheads

» Resolve dependencies to parallelize

Networking and Custom Logic Group

ACCELERATING THE LARGER FUNCTION

More computational steps
while (cond) {

some_data_manipulations; Deeper pipe

More area consumption

func();

some_more_data_manipulations; func1() implementation needs to adapt
funca(, Less parallelism

func3();

cond calculations: Data source/sink are different

} Maximize on chip data access/retrieval

While loop latency better

Be ready for surprises

Networking and Custom Logic Group

LIBRARY CONSIDERATIONS

while (cond) {
some_data_manipulations;
func();
some_more_data_manipulations;
func2();

func3();

cond_calculations;

}

Different library abstraction levels
possible

= The whole of the larger function
= func1(), func2(), func3()
= Primitives for functions

= Compatible interfaces, flow control

Architecture aware coding at every level is
required for getting good performance

Networking and Custom Logic Group

LIBRARIES FOR SPATIAL ARCHITECTURE

multitude of flexibilities needed

Data types (fixed point, half, float, double etc) Parallelism

Ingress / Egress gty[eg n instantiation, vectorization

o samples/cycle Latency limit

. streaming vs buffered » |s this component standalone or part of a pipeline
n dependencies to higher level function . implications to interfaces, control complexity

Data storage location

o onchip vs offchip Portability between device families, architectures

- bandwidth/latency assumptions greatly differ Challenges with the RTL based flow to capture all
of the above

High level language based frameworks needed to cafter for the
flexibility

Networking and Custom Logic Group intel" l 29

EASE OF USE WITH HLD

Networking and Custom Logic Group

REMOVING THE BARRIERS OF ADOPTION

G s
| ‘ Software
! - TensorFhow, Stacks
S Libraries
'C Frameworks
2 Parallel Deep Learning S
Primitives

< .
' el Intel® FPGA SDK for OpenCL

Compiler

Dsp Builder I LLVM Compiler
‘&M High-Level Design Backend Compiler

Intel® Quartus® Prime Design Software

Acceleration Stack Framework

Hardware Developers Software Developers

Networking and Custom Logic Group

ACCELERATING HLD TOOL IMPROVEMENTS

DSP Builder
IntelP HLS Compiler Front-End :"“%

C/C++ 1

Front-End

!

F OpenCL

OpenCL

Front End Tools Front-End
and Reporting

Actionable
Compiler feedback and

Optimizations power user
control

Accelerated
Improvement of
Quality of
Results

Accelerated
support for
advanced
features of our
products

-

Networking and Custom Logic Group

INTEL FPGA TOOLS PORTFOLIO

catering different developer personna

Software Programmer [

Algorithm Designer

oneAPI|

Intel® FPGA SDK for
OpenCL™

., Intel® HLS Compiler

DSP Builder for
Intel® FPGAS

Embedded Designer

Hardware Designer

\ 4

Networking and Custom Logic Group

INTEL'S ONE API

Project One API will deliver a unified programming
model to simplify development across diverse
architectures

Common developer experience across Scalar, Vector,
Matrix and Spatial architectures (CPU, GPU, Al and FPGA)

Based on industry standards and open specifications

More details on Language and compiler from Andrei
Hagiescu on Friday

Networking and Custom Logic Group

Optimized Applications

One API Optimized
Tools Middleware / Frameworks

One API Language & Libraries

SCALAR VECTOR MATRIX SPATIAL

ONE API FOR CROSS-ARCHITECTURE PERFORMANCE

Optimized Middleware & Frameworks

One API Product

Direct Programming API-Based Programming

Analysis &
Data Parallel C++ Libraries Debug Tools

L] L] L]

SCALAR VECTOR MATRIX SPATIAL

Networking and Custom Logic Group

RS (RS © © INTELVTUNE AMPLIFIER 2019
Analysis Configuration Collection Log ~ Summary Bottom-up | CalleniCallee Top-down Tree Platform
Grouping| Function / Call Stack][]

CPU Time ¥ [Context Switch Time |« | Context Switc A
Functon Cll Seck [] ‘G‘EE".ESLV;TWEOE‘I %‘;gﬁ:mr‘. Over ’ Spin Time Ovﬁwiad Wait Time | Inactive Time | Preemption
updateBusinessAccount 79155 @] 0s 0s 0s 00555
mainSompSparallel_for@269] 0s 0s 00555
~ __kmp_invoke_microtas| 0s 0s 0.0425
updateBusinessAccount 0s 0s 0.013s
updateCustomerAccount 0s 0s 0.052s 1111
__kmpe_atomic_fixeds_add
__kmpe_critical 0.014s5 262 v
'] L] [ke 2 2
Productive performance analysis across SVMS architectures e m—
u P y u
Context Switches
[Preemption

[CISynchronization
] amCPU Time.

(= o= MINSRSRMEEC I | < |
FILTER:| Al Modules ~ || AllSources | LoopsAnd Functions || All Threads -|INTElAﬂVl$0R2m9

Summary | @ Survey & Roofline

Performance Profiler

Parallelization Assistant

Debugger o s

Fle St Yew B Debuy Optoms Hep

2w ¢ » MRERR e BQ . G o R 1| 3| @ LosdDXiModules LoadPEMs LoadThis
T Assemblen 0 oot C5 to OXO010MFFFFFA000CSS 1524 () Processor Spectic Regaters | 1
Tl Address Opcodes Source Hame Descripton

Fo

° A meast ot

© 0x0010: 0XFFFF. ... cont €04, x9d 1o
na OXFFFFFR00DCSS1IF © Mamory Management

9000060000000

(& Locats [

Locaton
rrrrrs
XFEFETS
xFPECTS
xFFrETS
xrrrrrs
xrerrre

Networking and Custom Logic Group

COLLABORATION THROUGH LIBRARY

= Solution and platform developers growing... Great!!

= For broad adoption,

— FPGA device to be natively detected and used in the OS (driver
upstreaming)

— FPGA based acceleration/offload to be added to the main branch (FPGA
manager class upstream?)

— RTE, data transfer management
— Building on the work of others

— Collaboration on high level design based library flows

Networking and Custom Logic Group

CONCLUSION

» FPGAs can differentiate with platform level and architectural innovations.

= Adoption of FPGA use in the SW community requires ease of use on

development, debugging and optimization. Performance alone is not enough
for adoption.

= Benchmarking efforts should consider as much of the final solution as possible

to show FPGAS' worth. Simple functions are not enough to highlight strengths
of FPGA.

= Libraries for FPGA development should reflect the strength and flexibilities of
spatial design.

» For broad adoption in algorithmic space, an ecosystem of library developers
contributing to a common framework is needed.

Networking and Custom Logic Group

