
Dr. Suleyman Demirsoy

Algorithmic Acceleration Architect
Networking and Custom Logic Group

Programmable Solutions GroupNetworking and Custom Logic Group 2

Legal Notices and Disclaimers
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on
system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs
and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your
Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. The products described
may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on
request.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether
referenced data are accurate.

© 2019 Intel Corporation. Intel, the Intel logo and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

*OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos. Other names and brands may be claimed as the property of others.

Programmable Solutions GroupNetworking and Custom Logic Group 3

Platform level and Architectural differentiation

An acceleration scenario

Heterogeneous computing, FPGA in data centres

Obstacles in the way of Adoption

How to bring ease of use with High level Design

Programmable Solutions GroupNetworking and Custom Logic Group 4

My JOURNEY WITH FPGA

HW engineering background

Started as an IP designer (RTL → automation)

Communications Systems designer (RTL, DSP Builder Blockset on Simulink)

DSP Specialist (DSP Builder, HLS, OpenCL)

Acceleration Specialist (HLD Tools, Optimization)

Acceleration Architect (HLD Tools, Optimizations, Platforms)

Programmable Solutions GroupNetworking and Custom Logic Group

experiences

What if 10 Peta Flops, 10 Peta Bytes were
<10 Milliseconds away from every person?

5

Programmable Solutions GroupNetworking and Custom Logic Group

The future is a diverse mix of scalar,

vector, matrix, and spatial architectures
deployed in CPU, GPU, AI, FPGA and other
accelerators

6

Diverse Workloads require
DIVERSE architectures

Spatial

FPGA

Matrix

AI

Vector

GPU

Scalar

CPU

SVMS

Programmable Solutions GroupNetworking and Custom Logic Group

Race to expand applicability

Best of many worlds

Built-in accelerators

Chiplets (AI, memory, processors, interfaces …)

Chipsets

Various levels of interconnects

Delivering more performance and usability

7

Heterogeneous Computing

Programmable Solutions GroupNetworking and Custom Logic Group

More than our fair share

8

Programmable Solutions GroupNetworking and Custom Logic Group

Microsoft Catapult Architecture

Web search

ranking

Traditional software (CPU) server plane

QPICPU

QSFP

40Gb/s ToR

FPGA

CPU

40Gb/s

QSFP QSFP

Hardware acceleration plane

Interconnected FPGAs form a

separate plane of computation

Can be managed and used

independently from the CPU

Web search

ranking

Deep neural

networks

SDN offload

SQL

Programmable Solutions GroupNetworking and Custom Logic Group

CPU StorageFPGA

IO

Compute Acceleration

Storage Acceleration
- Cryptography
- Compression
- Indexing
- Key Value Store

Data Flow Processing
- Inline processing
- Pre-processing
- Pre-filtering
- Exception processing
- Cryptography
- Compression
- IO expansion
- Protocol bridging

FPGA

Control Plane
- Management
- Security
- Protocol bridging

Data Centre Use Models

FPGA

10

FPGAs enables platform-level and architectural differentiation

Interconnects
PCI -

QPI/UPI -
CCI-X®, GenZ®, OpenCAPI® -

CXL -

Storage

FPGA /
GPU

FPGA /
GPU

FPGA /
GPU

Programmable Solutions GroupNetworking and Custom Logic Group

What is CXL?

x16 PCIe
Card

X16 Connector

x16 FxB
Card

Processor

PCIe channel
SERDES

Connector
etc.

• CXL is an alternate protocol that runs across
the standard PCIe physical layer

• CXL uses a flexible processor port that can
auto-negotiate to either the standard PCIe
transaction protocol or the alternate CXL
transaction protocols

• First generation CXL aligns to 32 Gbps PCIe
Gen5

Programmable Solutions GroupNetworking and Custom Logic Group

EASE OF MEMORY ACCESS WITH CXL

Cache coherent access to
data from CPU/FPGA

▪ Removes capacity
problems for big data
processing

▪ Host access to memory
objects through native
methods

C X L

D
D

R
D

D
R

Processor

H
B

M
D

D
R

Accelerator

Accelerators with
Memory

Usages:
• GPU, FPGA
• Dense Computation
Protocols:
• CXL.io
• CXL.cache
• CXL.memory

Memory Buffers
Usages:
• Memory BW expansion
• Memory capacity expansion
• 2LM
Protocols:
• CXL.io
• CXL.mem

D
D

R

D
D

R

M
e

m

M
e

m

C X L

D
D

R
D

D
R

Processor

Memory
Buffer

Programmable Solutions GroupNetworking and Custom Logic Group

Loadable accelerator image

FPGA Platforms (Programmable Acceleration Cards)

Intel Xeon FPGA
Acceleration Libraries

Frameworks

Orchestration / Rack Level Management

FPGA Interface
Manager (FIM)

Intel® DAAL
Intel® MKL
Intel® MKL-DNN

Rack Scale Design

Hardware

Vertical Software
Frameworks/Libs
(DL, Networking,
Genomics, etc.)

Applications/
Orchestration

Intel® DL Deployment Toolkit

13

IP Libraries: Developed in-house and from
third parties

Open Programmable Acceleration Engine
(OPAE Software API)

Common Linux kernel driver, tools and software
programming layer, HLS/HDL FPGA design tools

FPGA Images

User Applications Deep Learning, Networking, Analytics, etc.

Operating Systems OS Enablement: Linux, Windows, ESXi,

FPGA HW & SW
Tool Chains

✓ Simplify FPGA
programming model

Common Infrastructure

Comprehensive acceleration Stack for Intel® Xeon ® CPU with FPGA

Programmable Solutions GroupNetworking and Custom Logic Group

More than our fair share

14

Programmable Solutions GroupNetworking and Custom Logic Group 15

Blackbox designs not always fulfil the needs.

▪ Sensitivity on owning the IP.

▪ Multiple customizations for different use
cases.

▪ Incremental improvements

– RTL vs automation

▪ Complexities in licensing models

Empower the SW developer with

▪ SW programmability

▪ Optimized library modules

▪ Profilers, debuggers

Not invented here (NIH) syndrome

Programmable Solutions GroupNetworking and Custom Logic Group 16

Bigger/deeper pipe with data streaming from one block to next
provides much higher differentiation

Benchmarking asks

Expectations vary hugely.

▪ Typical FPGA account:

– How do you compare against RTL?”

▪ Typical HPC account:

– Show us your results on
Gromacs…OpenFoam, LAMMPS…?

– … Linpack? … FFT? SGEMM?

– What can you show?

Simple functions may be misleading:

▪ Functions with dedicated ASIC blocks in
CPU/GPU

Small parts of large applications are also
misleading.

▪ Area estimates for a given performance
multiplier.

▪ Bigger/deeper pipeline changes a lot of
assumptions

Programmable Solutions GroupNetworking and Custom Logic Group 17

Diverse Workloads

HLD SDK

OPAE

Driver

OS

▪ Performance alone is not enough for
adoption.

– Why?

▪ Development environment

– Debugging, profiling

– Reporting

– IDE

▪ Ease of use in:

– Host code modifications,

– Data transfers

– Getting insightful feedback from compiler

Enabling SW community - Adoption

Programmable Solutions GroupNetworking and Custom Logic Group 19

Enabling the Broad Base – Trickle-Down Strategy

Broad user base

API Programming

Direct Programming

Building optimized
PRIMITIVES and LIBRARIES

that are re-used by the broad base.

Integrating and using pre-built
PRIMITIVES and LIBRARIES
in acceleration workloads.

Experienced developers

Experts

Not all user personas will be using HLD Tools for development.

Programmable Solutions GroupNetworking and Custom Logic Group 20

Programmable Solutions GroupNetworking and Custom Logic Group 21

…

while (cond) {

some_data_manipulations;

func1();

some_more_data_manipulations;

func2();

func3();

cond_calculations;

}

…

Accelerate

▪ func1();

▪ While loop

Benchmarking / development steps

Programmable Solutions GroupNetworking and Custom Logic Group 22

Accelerator Optimization Metrics

System Acceleration Metrics

TS Th Tf

TAS Th Tc Taf

System Acceleration As

Description

TS Time spent in an un-accelerated system

TAS Time spent in an accelerated system

Th

Time spent in main application, running on the host
(excluding un-accelerated function)

Tf Time spent in un-accelerated function

Tc

Time spent in communication between the host and
accelerator

Taf Time spent executing accelerated function

As System Acceleration = TS/TAS

Unaccelerated System

Accelerated System

Programmable Solutions GroupNetworking and Custom Logic Group 23

…

while (cond) {

some_data_manipulations;

start_timer();

func1();

finish_timer();

some_more_data_manipulations;

func2();

func3();

cond_calculations;

}

…

Where is the input data coming from?

What is the CPU execution time.

Any other benchmarks (i.e. GPU)?

Has func1() been optimized for CPU
execution? (vectorized, multi-thread
etc)?

func1() considerations

Programmable Solutions GroupNetworking and Custom Logic Group 24

You are always asked to report Tc + Taf

In most cases, you are in control of Tdata and Taf

Accelerator Optimization Metrics

System Acceleration Metrics

TS Th Tf

TAS Th Tc Taf

System Acceleration As

Description

TS Time spent in an un-accelerated system

TAS Time spent in an accelerated system

Th

Time spent in main application, running on the host
(excluding un-accelerated function)

Tf Time spent in un-accelerated function

Tc

Time spent in communication between the host and
accelerator (Tctrl + Tdata)

Taf Time spent executing accelerated function

As System Acceleration = TS/TAS

Unaccelerated System

Tctrl + Tdata Taf

Tctrl
Tdata + Taf

Programmable Solutions GroupNetworking and Custom Logic Group 25

Intel Vtune shows CPU/FPGA interaction
Intel® VTune™ Amplifier – Performance Profiler

Programmable Solutions GroupNetworking and Custom Logic Group 26

…

while (cond) {

some_data_manipulations;

start_timer();

func1();

finish_timer();

some_more_data_manipulations;

func2();

func3();

cond_calculations;

}

…

Ways to get performance in your
func1() accelerator

▪ Instantiation

▪ Vectorization

▪ Reducing data transfer and control
overheads

▪ Resolve dependencies to parallelize

func1() considerations

Programmable Solutions GroupNetworking and Custom Logic Group 27

…

while (cond) {

some_data_manipulations;

func1();

some_more_data_manipulations;

func2();

func3();

cond_calculations;

}

…

More computational steps

Deeper pipe
More area consumption

func1() implementation needs to adapt

Less parallelism

Data source/sink are different

Maximize on chip data access/retrieval

While loop latency better

Be ready for surprises

Accelerating the larger function

Programmable Solutions GroupNetworking and Custom Logic Group 28

…

while (cond) {

some_data_manipulations;

func1();

some_more_data_manipulations;

func2();

func3();

cond_calculations;

}

…

Different library abstraction levels
possible

▪ The whole of the larger function

▪ func1(), func2(), func3()

▪ Primitives for functions

▪ Compatible interfaces, flow control

Architecture aware coding at every level is
required for getting good performance

LIBRARY CONSIDERATIONS

Programmable Solutions GroupNetworking and Custom Logic Group 29

High level language based frameworks needed to cater for the
flexibility

Libraries for Spatial Architecture
multitude of flexibilities needed

Data types (fixed point, half, float, double etc)

Ingress / Egress styles

▪ samples/cycle

▪ streaming vs buffered

▪ dependencies to higher level function

Data storage location

▪ onchip vs offchip

▪ bandwidth/latency assumptions greatly differ

Parallelism

▪ instantiation, vectorization

Latency limit

▪ Is this component standalone or part of a pipeline

▪ implications to interfaces, control complexity

Portability between device families, architectures

Challenges with the RTL based flow to capture all
of the above

Programmable Solutions GroupNetworking and Custom Logic Group 30

Programmable Solutions GroupNetworking and Custom Logic Group

Removing The Barriers of Adoption

Hardware Developers Software Developers

Intel® Quartus® Prime Design Software

High-Level Design Backend Compiler

LLVM Compiler

Intel® HLS
Compiler Intel® FPGA SDK for OpenCL

Deep Learning
Accelerator

Acceleration Stack Framework

AI
Frameworks

Primitives
Parallel

Compilers

Libraries

Software
Stacks

DSP Builder

Programmable Solutions GroupNetworking and Custom Logic Group

Platform

Accelerating HLD Tool Improvements

32

Front End Tools
and Reporting

Compiler
Optimizations

Compiler
Infrastructure

C/C++
Front-End

DSP Builder
Front-End

OpenCL
Front-End

Accelerated
Improvement of

Quality of
Results

Accelerated
support for
advanced

features of our
products

Actionable
feedback and

power user
control

Intel® HLS Compiler

Programmable Solutions GroupNetworking and Custom Logic Group 33

Intel FPGA Tools Portfolio
catering different developer personna

Algorithm Designer

Software Programmer

Embedded Designer

Hardware Designer

Intel® FPGA SDK for
OpenCL™

DSP Builder for
Intel® FPGAs

Intel® HLS Compiler

HDL Code
Quartus, Platform Designer

P
E

R
S

O
N

A

oneAPI

Programmable Solutions GroupNetworking and Custom Logic Group 34

Intel’s ONE API
Core Concept

Project One API will deliver a unified programming
model to simplify development across diverse
architectures

Common developer experience across Scalar, Vector,
Matrix and Spatial architectures (CPU, GPU, AI and FPGA)

Based on industry standards and open specifications

More details on Language and compiler from Andrei
Hagiescu on Friday

Optimized Applications

Optimized
Middleware / Frameworks

One API Language & Libraries

FPGAAIGPUCPU

Scalar Vector Matrix Spatial

One API
Tools

Programmable Solutions GroupNetworking and Custom Logic Group

Some capabilities may differ per architecture.

35

One API for cross-architecture performance
Optimized Applications

Optimized Middleware & Frameworks

One API Product

Direct Programming

Data Parallel C++

API-Based Programming

Libraries
Analysis &

Debug Tools

Scalar Vector Matrix Spatial

FPGAAIGPUCPU

Programmable Solutions GroupNetworking and Custom Logic Group

Productive performance analysis across SVMS architectures

Performance Profiler

Parallelization Assistant

Debugger

38

advanced Analysis & Debug tools

Programmable Solutions GroupNetworking and Custom Logic Group 39

Collaboration through library

▪ Solution and platform developers growing… Great!!

▪ For broad adoption,

– FPGA device to be natively detected and used in the OS (driver
upstreaming)

– FPGA based acceleration/offload to be added to the main branch (FPGA
manager class upstream?)

– RTE, data transfer management

– Building on the work of others

– Collaboration on high level design based library flows

Programmable Solutions GroupNetworking and Custom Logic Group 40

Conclusion

▪ FPGAs can differentiate with platform level and architectural innovations.

▪ Adoption of FPGA use in the SW community requires ease of use on
development, debugging and optimization. Performance alone is not enough
for adoption.

▪ Benchmarking efforts should consider as much of the final solution as possible
to show FPGAs’ worth. Simple functions are not enough to highlight strengths
of FPGA.

▪ Libraries for FPGA development should reflect the strength and flexibilities of
spatial design.

▪ For broad adoption in algorithmic space, an ecosystem of library developers
contributing to a common framework is needed.

