

THE UNIVERSITY OF WARWICK

Neural Network Overlay Using FPGA DSP Blocks

Lenos Ioannou and Suhaib A. Fahmy

School of Engineering, University of Warwick, UK

- Long back-end tool compilation hinders rapid deployment of Neural Networks on FPGAs at the edge
- Use of overlays to build abstractions on top of the FPGA
 - Effectively enabling rapid deployment
- Core NN operation, multiply-accumulate, maps well to DSP Blocks
- Most FPGA NN implementations operate sub-max frequencies [1]
 - Can be solved by optimising the overlay around the DSP blocks [3]

Neural Network Test Cases

- Trained 3 NNs using Tensorflow [2], each one comprises four layers
- Use of ReLU in the intermediate layers

Dataset	NN Topology	Acc. Train	Acc. Test
Customer Churn Dataset Diabetes Dataset	11-6-6-1 8-12-8-1	84.26% 78.39%	82.95%
Iris Dataset	4-10-10-3	98.33%	96.67%
Overlay	11-12-10-3	-	-

- Considering the input bit-widths of the DSP48E2:
 - 18 bit weights27 bit inputs
 - 48 bit biases

- Each neuron is mapped to a single DSP block
- DSP blocks alternate between two opmodes
- Serial data flow
 - Needs to stall when # neurons > # inputs
- Adjustable latency

• Implemented the overlay targeting the Zynq Ultrascale+ ZU7EV

LUTs	LUTRAM	FFs	DSPs	Frequency (MHz)
796	225	2552	25	770

- Maintains low resource utilization
 - Feedforward serial data flow is highly efficient
- High operating frequency
 - Near the DSP blocks' theoretical maximum

- Not offering peak performance in a particular NN implementation
- Contribute to the more rapid deployment of NNs on FPGAs at the edge
- Prioritise low resource utilization and energy efficiency

Future work

- Implement a mechanism to handle the data flow and stall accordingly
- Expand the overlay for deeper topologies
- Integration with a rapid compiler flow

References

- [1] E. Wu, X. Zhang, D. Berman, and I. Cho, "A high-throughput reconfigurable processing array for neural networks," in Int. Conference on Field Programmable Logic and Applications (FPL), Sep. 2017.
- [2] Martin Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
- [3] A. K. Jain, D. L. Maskell, and S. A. Fahmy, "Throughput oriented FPGA overlays using DSP blocks," in 2016 Design, Automation Test in Europe Conference Exhibition (DATE), March 2016, pp. 1628–1633.
- [4] A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmy, "DeCO: A DSP block based FPGA accelerator overlay with low overhead interconnect," in Proc. Int. Symposium on Field-Programmable Custom Computing Machines (FCCM), 2016, pp. 1–8.