

FPL 2019 - PhD Forum

FPGA Accelerated Deep Learning Radio Modulation Classification Using MATLAB System Objects & PYNQ

Andrew MacIellan, Lewis McLaughlin, Louise Crockett, Robert W. Stewart

Motivation

Impact of Deep Learning:

Motivation

Impact of Deep Learning:

Our Aim

Develop a workflow for training, quantising, simulating and implementing CNNs for communications on Zynq

Figure 1. Credit Mathworks - Zynq SDR Support from Communications Toolbox

Application - Automatic Modulation Classification

- Application for Spectrum Sensing
- Paper outlining this CNN structure by T. O'shea 2016
- Apply already proven structure and transfer it to hardware.
- Reduced modulation schemes to 2 for implementations simplicity

Layer #	Layer type	Neurons	Activations	MACs
1	Input	2*128	-	-
2	Conv	64*1*3	ReLU	48384
3	Conv	16*2*3	ReLU	761856
4	Dense	128	ReLU	253952
5	Dense	2	Softmax	256
6	Output	2	-	-

Quantised CNN

- Avoid quantising from trained floating-point weights
- Massive reduction in accuracy
 Altered our training process to train with quar
- Altered our training process to train with quantisation limitations

Example of kernel quantised training

Quantised CNN

Classification Accuracy (%)

Preliminary Proposed System

RFSoC

(Zyng UltraScale+ ZCU111 Evaluation Platform)

Single chip transmit/receive

PYNQ

- Python productivity on Zynq
- Dynamically change modulation scheme
- Visualise the CNN decision making in real-time

Proposed Workflow

Train quantised weights

Load weights into MATLAB System Objects

Generate HDL with HDL Coder

Integrate with PYNQ overlay in Vivado

- Train quantised weights on DL frameworks
- Tensorflow/Keras
- PyTorch
- MATLAB Deep Learning Toolbox
- Configurable System Objects
- Adjustable CNN dimensions
- Simulate quantised network using Simulink

- Integrate with other MATLAB HDL IP
- Generate HDL for both CNN & communications applications
- Generate PYNQ bitstream for deployment
- Interface with Jupyter notebook

Thank you!

Questions can be answered at the poster.

Feel free to come and discuss with us:)