
A distributed model of computation
for reconfigurable devices based on

a streaming architecture

Paolo Cretaro
National Institute for Nuclear Physics

FPL 2019
Barcelona, September 2019

The ExaNeSt project: hardware highlights

Unit: Xilinx Zynq Ultrascale+ FPGA
 Four 64bit ARM Cortex A53 @1.5GHz
 Programmable logic
 16 high speed serial links @16Gbps

Node: Quad-FPGA Daughter-Board (QFDB)
 All-to-all internal connectivity
 10 HSS links to remote QFDB (through network

FPGA)
 64 GB DDR4 RAM (16GB per FPGA)
 512 GB NVMe SSD on storage FPGA

Blade/mezzanine
 4 QFDB in Track 1
 2 HSS links per edge (local direct network)
 32 SFP+ connectors for inter-mezzanine hybrid

network

10/09/2019Paolo Cretaro - FPL2019 2

I worked in the team who made the 3D
torus network, based on a custom Virtual
Cut-Through protocol

Mixing acceleration and network

 With High Level Synthesis tools, FPGAs are becoming a
viable way to accelerate tasks

 Accelerators must be able to access the network directly to
achieve low-latency communication among themselves and
other remote hosts

 A dataflow programming paradigm could take advantage of
this feature to optimize communication patterns and loads

10/09/2019Paolo Cretaro - FPL2019 3

CPU

DDR

ACCELERATOR

NETWORK
INTERFACE

CPU

DDR

System memory mapped bus

NETW
ORK

Kahn processing networks advantages

Group of sequential processes communicating through FIFO
channels
 Determinism: for the same input history the network produces

exactly the same output
 No shared memory: processes can run concurrently and

synchronize through blocking read on input channel FIFOs
 Distributing tasks on multiple devices is easy

10/09/2019Paolo Cretaro - FPL2019 4

P

A

B

C

Accelerator hardware interface

 Virtual input/output channels for each source/destination
 Direct host memory access for buffering and

configuration (a device driver is needed)
 Direct coupling with the network

10/09/2019Paolo Cretaro - FPL2019 5

ACCELERATION
CORE

ACCELERATION
CORE

A
D

A
P

T
E

R
A

D
A

P
T

E
R

A
D

A
P

T
E

R
A

D
A

P
T

E
R

HOST
MEMORY

HOST
MEMORY

N
E

T
W

O
R

K
N

E
T

W
O

R
K

N
E

T
W

O
R

K
N

E
T

W
O

R
K

Steps description

1. Write kernels in HLS

2. A config file delineates tasks
and data dependencies

3. A directed graph is built and
mapped on the network
topology

4. Accelerator blocks are flashed
on targeted nodes

5. Data is fed into entry points and
tasks are started

6. Each task consumes its data
and send the results to the next
ones

10/09/2019Paolo Cretaro - FPL2019 6

A

B

C

D

E

CU
0/A

CU
1/B

CU
2

CU
3/C

CU
4/D,E

CU
5

CU
6

CU
7

CU
8

Simplified task graph configuration example

10/09/2019Paolo Cretaro - FPL2019 7

Device0 {
 Type: FPGA
 Task0 {
 Impl: source_task.c
 Input_channels: 0
 Output_channels {
 Ch0: Device1.Task0.Ch1
 }
 }
 Task1 {
 Impl: source_task.c
 Input_channels: 0
 Output_channels {
 Ch0: Device1.Task0.Ch0
 }
 }
}
Device1 {
 Type: FPGA
 Task0 {
 Impl: example_task.c
 Input_channels: 2
 Output_channels {
 Ch0: Device1.Task1.Ch0
 }
 }
 Task1 {
 Impl: sink_task.c
 input_channels: 1
 }
}

Thank you!

10/09/2019Paolo Cretaro - FPL2019 8

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

