A Dynamic Memory Allocation Library for High-Level Synthesis

Nicholas V. Giamblanco and Jason H. Anderson University of Toronto, Canada Dept. of Electrical and Computer Engineering FPL 2019

Dynamic Memory Allocation in HLS: Current Problems

No Obvious Way TO include it!

Where and How Big should the Arena(Heap) Be?

Which Allocator?

Performance & Area Problems

Dynamic Memory Allocation in HLS: Why Include it?

- No More Code-Refactoring!
- No More Memory Over-Provisioning
- Portability
- Marginal Performance and Area Impacts!!!

The Allocators

Our Approach

Implement Algorithms in HLS-friendly C Library

• Arena (heap) implemented as BRAM

Automate Transform with LLVM Pass

- User can select
 - Allocator Algorithm
 - Heap Size

Available on Github: https://github.com/ngiambla/libmem

Example:

// USER PROGRAM
void check_this_out() {
 int * arr = (int*)malloc(SIZE);
 //... do stuff here
 free(arr);

#TCL PARAMETERS FOR USER

set_parameter HEAP_SZ 65536
set_parameter ALLOC_S gnu

void check_this_out() {
 int * arr = (int*)gnu_malloc(SIZE);
 //... do stuff here
 gnu_free(arr);

libmem

Allocator Evaluation

Results: Area

Number of ALMs

Results: Performance

Fmax (MHz)

Typical Memory Request Patterns

Random: random request, random release Square: request-do-release Triangular: iterative-request do iterative-release

Available on Github: https://github.com/ngiambla/dmbenchhls

Take-away

Suggest an allocator based on Memory Pattern AND User Requirements

Memory Pattern	Area Efficient	Latency Sensitive	Fast Clock Frequency	Exe. Time
11.	bitmem	gnumem, lutmem	gnumem	lutmem, gnumem
111	bitmem	gnumem	lutmem, bitmem	lutmem
	linmem*, bitmem	linmem*, lutmem	linmem*, bitmem	linmem*, lutmem

Conclusions

- One Allocator does not 'rule them all'
 Performance and area are marginally affected by allocators!
- Allocators within HLS work and are useful

THANKS!

SEE ME AT THE POSTER

Downloads: https://github.com/ngiambla/libmem https://github.com/ngiambla/dmbenchhls