
Nicholas V. Giamblanco and Jason H. Anderson
University of Toronto, Canada

Dept. of Electrical and Computer Engineering
FPL 2019

A Dynamic Memory Allocation Library
for

High-Level Synthesis

Dynamic Memory Allocation in HLS:
Current Problems

Where and How Big
should the

Arena(Heap) Be?

Performance &
Area Problems

Which Allocator?

2

No Obvious Way
TO include it!

Dynamic Memory Allocation in HLS:
Why Include it?

3

● No More Code-Refactoring!

● Portability

● Marginal Performance and
Area Impacts!!!

● No More Memory Over-Provisioning

The Allocators

Linked-List Allocator.gnumem

bitmem Bitmap Allocator.

linmem Linear Allocator.

budmem Buddy Allocator.

lutmem Look-Up Table Allocator.

4

Our Approach

Implement Algorithms in HLS-friendly C Library

 Available on Github: https://github.com/ngiambla/libmem

● Arena (heap) implemented as BRAM

5

Automate Transform with LLVM Pass
● User can select

○ Allocator Algorithm
○ Heap Size

Example:

// USER PROGRAM
void check_this_out() {

int * arr = (int*)malloc(SIZE);
//… do stuff here
free(arr);

}

void check_this_out() {
int * arr = (int*)gnu_malloc(SIZE);
//… do stuff here
gnu_free(arr);

} 6

#TCL PARAMETERS FOR USER

set_parameter HEAP_SZ 65536
set_parameter ALLOC_S gnu

 libmem

Allocator Evaluation

7

Results: Area

8

9

Results: Performance

Benchmarks

Real world apps

Random: random request, random release
Square: request-do-release
Triangular: iterative-request do iterative-release

list
priq
stack

hash
dfs

Available on Github: https://github.com/ngiambla/dmbenchhls

10

Typical Memory Request Patterns

Suggest an allocator based on Memory Pattern
AND

User Requirements

11

Take-away

Conclusions

● One Allocator does not ‘rule them all’

● Performance and area are marginally affected by

allocators!

● Allocators within HLS work and are useful

12

THANKS!

SEE ME AT THE POSTER

Downloads:
https://github.com/ngiambla/libmem
https://github.com/ngiambla/dmbenchhls

13

