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Why process data streams in real-time?

Real time, continuous, high-volume data streams:
 Network monitoring for DoS attacks

* Monitoring market data to guide algorithmic trading
* Adaptive online advertising, etc.

Too big to store in memory => build approximate sketch synopses

Our focus here: Exponential Count-Min (ECM) sketches
 Papapetrou et al [VLDB12, VLDBJ15]

e Space and time efficient

* Support frequency and inner product queries

 Bounded error data structures

Contribution: Explore ECM Sketch acceleration architectures on FPGA
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Example: Distribution statistics at routers

* Maintain sliding-window data stream statistics
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ECM Sketch Primer

e Sketch is a set of d hash functions f1, f2, ..., fd and a 2-
dimensional array of w x d “counters”

 “Counter” is an Exponential Histogram structure (space efficient for
large time windows)

* For each incoming key:
* |s hashed d times to select which EH to update in each of the d
rows
 d EHs are updated
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Before 4 2 2 1 |1
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Sizing ECM Sketches

ECM sketch provides frequency estimates with an error less than €*N,
with probability at least 1 - 6
N denotes the length of the sliding window

ECM Sketch parameters:
» Number of rows: d = [In 1/6]
» Number of Exponential Histograms (EHs) in each line : w = [e/g]

» Number of positions at each bucket level: k = [1/¢]
» Number of bucket levels for each EH: L >= O(log(2N/k) + 1)

Update complexity: O(logN)

Amortized complexity is constant, expected 2 merges per update
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Accelerator Architecture #1

ECM Sketches are 3-D structuresd x w x L

- Only one EH per row active at any time

- Have d independent structures

- Group data for each of the w EHs of a ECM row in BRAMSs
- Update takes >=1 cycle, but pipelined!

Result:

+ Fully pipelined, guaranteed throughput design

- Worst case design: each EH has L pipeline stages, only 2 active on
the average



Fully pipelined architecture (FC)
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Problem: Did not fit in Convey V6 FPGA due to high BRAM use



Accelerator Architecture #2

Our Convey HC-2ex platform uses Virtex6 devices
=> Not particularly large devices
Together with “shell”, the FC architecture did not fit
BRAM space was the bottleneck

Go for space efficiency:
BRAMSs underused (w is 55, minimum BRAM rows is 512)
Amortized update cost is 2 => most pipelined levels are idle!



Key idea to exploit amortized ECM update cost
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CAUTION:
Space: mapped L-1 level counters into one worker (BRAM size?)
Multiple hits in the same row => more work for worker
Multiple hits in the same EH => more work for worker



ECM Worker Internal Structure
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Provide additional memory

Cost-Aware architecture (CA) & processing BW
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Now we can play:

One parameter: how many bucket to instantiate before Worker
* More levels => better tolerance to skewed workloads

What about LARGE windows?
L becomes large BUT update load exponentially decreases
=> store in DRAM!
DRAM is slower than BRAM => need to get there infrequently



Hybrid Architecture
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Can we Exceed 1 tuple per cycle?

All architectures so far assume input of one tuple per cycle

What if | have T input tuples per cycle?
 Hash d*T tuples

e Update d*T EHs
e |f d*T << #EHs, chances are good that different EHs will be updated

Corollaries:
e Cannot group into d rows (d << d*T)
* Multiple updates to same EH at same cycle are possible!



> 1 tuple per cycle: Multithreaded Architecture
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System implementation

System Parameters
e =0.05, 6 =0.05
w=55d=3, k=11
CA architecture P was set to 6 (2 workers per row)
Hybrid: K =5 (bucket levels before DRAM)
MT: K=5, T =3, #FrontStages = 10

Target platform
Convey HC-2ex, two six-core Xeon E5-2640 processors, 128GB
and four Xilinx Virtex-6 LX760 FPGAs (use only one)

» Shell logic clock fixed at 150MHz

» 474K LUTs, 948K flip flops, and 1440x18 Kbit BRAMSs




Evaluation

Five Input Datasets
v' Crawdad SNMP Fall 03/04 [11]
v' CAIDA Anonymized Internet Traces 2011
v' WC, the data set from world cup98 [2]
v" Two randomly generated traces

Software baseline
 Reference software from Papapetrou et al. [VLDBJ15]
 Multi-thread parallelized version of the reference SW (lock limited)
FPGA versions
* Implemented & tested on Convey




Performance comparison (single FPGA)

Dataset

#Tuples

Update Rate (Million (10°) Tuples/sec)

SWx1/x24 | FP CA | Hybrid | MT
Random 10% 10.6/16.4 | 1501 | 145.1 101.3 | 178.2
Random?2 10° 10.8/19.9 | 150t | 147.3 | 101.2 | 177.8
SNMP 3.1x10" | 11.4/26.6 | 150+ | 141.1 101.3 | 173.0
CAIDA 10° 10.2/19.6 | 1501 | 1479 | 101.2 | 1833
WC 10°% 12.2/24.6 | 150t | 147.1 | 101.1 | 148.5
Note:

SW performance is between 10-27 Mtuples/sec
T FP operating frequency is estimated
FP performance is guaranteed, {CA, Hybrid, MT} are best effort




Resource utilization

virtex6 FP CA Hybrid MT
Resources
LUTs 137.9K/29% 22.3K/5% 86,3K/18% 223.3K/47%
FFs 57.0K/6% 5.7K/1% 38.5K /4% 141.6K/15%
BRAMs 1071/74% 357/25% 651/45% 847/59%

Numbers DO NOT include the “shell” logic

CA is more cost effective than FP (6x in logic, 3x in BRAMSs)
MT cost is significant, Hybrid is affordable

FP & CA are the best overall options
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Performance on Recent Devices: US+ xczul7/eg

UltraScale FP CA Hybrid MT
Resources
LUT 62.6K/15% 26.1K/6% 35.8K/8.5% 371.6K/87%
FF 21.5K/2% 8. 7TK/1% 6.8K/1% 110.4K/13%
BRAM 535/67% 220/28% 168/21% 504/63%
Freq (MHz) 260 220 244 170
Performance
Menrles/seo) 260 214 165 198
Note:

Post P&R tool result
FP is affordable, CA is even better (in cost)!
Hybrid and MT are not really worth it




Conclusions

Sliding-window statistics on streaming data is an important application domain
ECM Sketches offer error bound in common queries and are HW friendly

A range of efficient accelerators is possible and offer 5-10x compared to
multithreaded SW

Guaranteed or best-effort operation? Cost vs Error tolerance tradeoff!

Additional resources in modern FPGAs can be used to implement better ECM
sketches: larger time window and/or tighter error bounds € and 6



Thank youl!

Questions?
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