
Data stream statistics over sliding windows:
How to summarize 150 Million updates per

second on a single node

Grigorios Chrysos†, Odysseas Papapetrou‡, Dionisios Pnevmatikatos†,
Apostolos Dollas†, Minos Garofalakis†

†Technical University of Crete, Greece
‡Eindhoven University of Technology, Netherlands

ATHENA Research and Innovation Center, Greece

Why process data streams in real-time?
Real time, continuous, high-volume data streams:
• Network monitoring for DoS attacks
• Monitoring market data to guide algorithmic trading
• Adaptive online advertising, etc.

Too big to store in memory => build approximate sketch synopses

Our focus here: Exponential Count-Min (ECM) sketches
• Papapetrou et al [VLDB12, VLDBJ15]
• Space and time efficient
• Support frequency and inner product queries
• Bounded error data structures

Contribution: Explore ECM Sketch acceleration architectures on FPGA2

Outline

• ECK Sketch Primer

• ECM Acceleration Architectures

• Evaluation

• Conclusions

3

Example: Distribution statistics at routers
• Maintain sliding-window data stream statistics

IP address Timestamp
(msec)

194.42.1.1 0
194.44.2.6 2
194.42.1.1 4
220.40.41.4 7
194.42.1.1 8

…
220.40.41.4 999
222.1.34.7 1001
194.42.1.1 1003
194.42.1.1 1009

10
00

 m
se

c
sl

id
in

g
w

in
do

w

IP counters
ip freq.

194.42.1.1 1

194.44.2.6 1

220.40.41.4 1

222.1.34.7 1

194.42.1.1 2194.42.1.1 3

220.40.41.4 2

194.42.1.1 2

194.44.2.6 0

194.42.1.1 3194.42.1.1 2

220.40.41.4 1

ECM Sketch Primer
• Sketch is a set of d hash functions f1, f2, . . . , fd and a 2-

dimensional array of w x d “counters”

• “Counter” is an Exponential Histogram structure (space efficient for
large time windows)

• For each incoming key:
• Is hashed d times to select which EH to update in each of the d

rows
• d EΗs are updated

5

ECM Sketch

6

+1,t …

+1,t …

+1,t

d row
s

w columns

f1

f2

fd

132.1.3.4
observed
at time 31

Updating the individual EHs

ECM Sketch

7

+1,t …

+1,t …

+1,t

d row
s

w columns

f1

f2

fd

132.1.3.4
observed
at time 31

Updating the individual EHs

Level 2 Level 1 Level 0
size=22 size=21 size=20

Before 4 2 2 1 1

After 4 2 2 1 1 1
Invariant 2 invalidated: 3 buckets of size 1

1st merge 4 2 2 2 1

2nd merge 4 4 2 1

Time 0 14 19 23 26 28 31

Sizing ECM Sketches
ECM sketch provides frequency estimates with an error less than ε*N,
with probability at least 1 − δ
N denotes the length of the sliding window

ECM Sketch parameters:
 Number of rows: d = ln 1/δ
 Number of Exponential Histograms (EHs) in each line : w = e/ε
 Number of positions at each bucket level: k = 1/ε
 Number of bucket levels for each EH: L >= O(log(2N/k) + 1)

Update complexity: O(logN)
Amortized complexity is constant, expected 2 merges per update

8

Outline

• ECK sketch primer

• ECM Acceleration Architectures

• Evaluation

• Conclusions

9

Accelerator Architecture #1
ECM Sketches are 3-D structures d x w x L
- Only one EH per row active at any time
- Have d independent structures
- Group data for each of the w EHs of a ECM row in BRAMs
- Update takes >=1 cycle, but pipelined!

Result:
+ Fully pipelined, guaranteed throughput design
- Worst case design: each EH has L pipeline stages, only 2 active on
the average

10

Fully pipelined architecture (FC)

11

...45 40 28 26

...

M
em

ory

M
em

ory

M
em

ory

M
em

ory

...

 Bucket Level #0

EH Id

Expires?

M
em

ory

M
em

ory

M
em

ory

M
em

ory

...

Bucket Level #N-1

...10 8 3 1

P
I
P
E
L
I
N
E

R
E
G

P
I
P
E
L
I
N
E

R
E
G

Expires?

P
I
P
E
L
I
N
E

R
E
G

Hash
Func 0

...45 40 28 26

...

M
em

ory

M
em

ory

M
em

ory

M
em

ory

...

 Bucket Level #0

EH Id

Expires?

M
em

ory

M
em

ory

M
em

ory

M
em

ory

...

Bucket Level #N-1

...10 8 3 1

P
I
P
E
L
I
N
E

R
E
G

P
I
P
E
L
I
N
E

R
E
G

Expires?

P
I
P
E
L
I
N
E

R
E
G

Hash
Func 0

...45 40 28 26

...

Window Size

M
em

ory

M
em

ory

M
em

ory

M
em

ory

...

 Bucket Level #1

EH IdTuple

Expires?

M
em

ory

M
em

ory

M
em

ory

M
em

ory

...

Bucket Level #L

...10 8 3 1

P
I
P
E
L
I
N
E

R
E
G

P
I
P
E
L
I
N
E

R
E
G

Expires?

P
I
P
E
L
I
N
E

R
E
G

Hash
Func 1

ECM Row 1

ECM Row d

ECM Row 2. . .

. . .

Problem: Did not fit in Convey V6 FPGA due to high BRAM use

Accelerator Architecture #2
Our Convey HC-2ex platform uses Virtex6 devices

=> Not particularly large devices
Together with “shell”, the FC architecture did not fit
BRAM space was the bottleneck

Go for space efficiency:
BRAMs underused (w is 55, minimum BRAM rows is 512)
Amortized update cost is 2 => most pipelined levels are idle!

12

Key idea to exploit amortized ECM update cost

13

Hash
Func

...BL #1 BL #LBL #L-1BL #2

ECM WorkerHash
Func

BL #1

CAUTION:
Space: mapped L-1 level counters into one worker (BRAM size?)
Multiple hits in the same row => more work for worker
Multiple hits in the same EH => more work for worker

ECM Worker Internal Structure

14

...45 40 28 26

Window
Size

M
em

ory

M
em

ory

M
em

ory

M
em

ory

...Tuple

Expires?

Update
FIFO

New Merge
FIFO

 ECM Worker

P
I
P
E
L
I
N
E

R
E
G

Cost-Aware architecture (CA)

15

EH IdHash
Func 1

ECM row 1...

Bucket
Level #1

Window
Size

EH IdHash
Func d

ECM row d

Bucket
Level #1

ECM Worker #0
...

ECM Worker #P

ECM Worker #1

ECM Worker #P-1

Tuple

Provide additional memory
& processing BW

Now we can play:
One parameter: how many bucket levels to instantiate before Worker

• More levels => better tolerance to skewed workloads

What about LARGE windows?
L becomes large BUT update load exponentially decreases
=> store in DRAM!
DRAM is slower than BRAM => need to get there infrequently

16

Hybrid Architecture

17

...

...22 14 6 5

Updates
FIFO

New Merge
FIFO

ECM BackStage

...45 40 28 26

...M
em

ory

M
em

ory

M
em

ory

M
em

ory

...

Bucket Level #1

EH Id

Exp?

M
em

ory

M
em

ory

M
em

ory

M
em

ory

...

Bucket Level #K

...10 8 3 1

ECM FrontStage #1
P
I
P
E
L
I
N
E

R
E
G

P
I
P
E
L
I
N
E

R
E
G

Exp?

P
I
P
E
L
I
N
E

R
E
G

...95 92 76 45

...M
em

ory

M
em

ory

M
em

ory

M
em

ory

...

Bucket Level #1

EH Id

Exp?

M
em

ory

M
em

ory

M
em

ory

M
em

ory

...

Bucket Level #K

...30 29 27 25

ECM FrontStage #d
P
I
P
E
L
I
N
E

R
E
G

P
I
P
E
L
I
N
E

R
E
G

Exp?

P
I
P
E
L
I
N
E

R
E
G

DRAM

Exp?

P
I
P
E
L
I
N
E

R
E
G

Hash
Func 1

Hash
Func d

Window
Size

Tuple

CAUTION:
Choose K carefully so that DRAM BW is sufficient most of the time

Can we Exceed 1 tuple per cycle?
All architectures so far assume input of one tuple per cycle

What if I have T input tuples per cycle?
• Hash d*T tuples
• Update d*T EHs
• If d*T << #EHs, chances are good that different EHs will be updated

Corollaries:
• Cannot group into d rows (d << d*T)
• Multiple updates to same EH at same cycle are possible!

18

Hash
#d

Hash
#d

ECM FrontStage #1

Extra EH Struct. #1...
ECM BackStage

ECM FrontStage #T * d

Extra EH Struct. #T * d

New ECM FrontStage #T*d
Tuple

#T

New ECM FrontStage #1

Tuple
#1

DDRHash
#1

Hash
#1

ICN

......

Heavy Hiter
Detection

Heavy Hiter
Detection

> 1 tuple per cycle: Multithreaded Architecture

19

d*T
hashing ICN ~Hybrid Pipeline

~Hybrid
Backstage

“overflow” pipeline

Outline

• ECK sketch primer

• ECM Acceleration Architectures

• Evaluation

• Conclusions

20

System implementation
System Parameters

ε = 0.05, δ = 0.05
w = 55, d = 3, k = 11
CA architecture P was set to 6 (2 workers per row)
Hybrid: K = 5 (bucket levels before DRAM)
MT: K = 5, T = 3, #FrontStages = 10

Target platform
Convey HC-2ex, two six-core Xeon E5-2640 processors, 128GB
and four Xilinx Virtex-6 LX760 FPGAs (use only one)
 Shell logic clock fixed at 150MHz
 474K LUTs, 948K flip flops, and 1440x18 Kbit BRAMs

21

Evaluation
Five Input Datasets
 Crawdad SNMP Fall 03/04 [11]
 CAIDA Anonymized Internet Traces 2011
 WC, the data set from world cup98 [2]
 Two randomly generated traces

Software baseline
• Reference software from Papapetrou et al. [VLDBJ15]
• Multi-thread parallelized version of the reference SW (lock limited)

FPGA versions
• Implemented & tested on Convey

22

Performance comparison (single FPGA)

Note:
SW performance is between 10-27 Mtuples/sec
† FP opera ng frequency is es mated
FP performance is guaranteed, {CA, Hybrid, MT} are best effort 23

Resource utilization

Numbers DO NOT include the “shell” logic

CA is more cost effective than FP (6x in logic, 3x in BRAMs)
MT cost is significant, Hybrid is affordable

FP & CA are the best overall options
24

Note:
Post P&R tool result
FP is affordable, CA is even better (in cost)!
Hybrid and MT are not really worth it

Performance on Recent Devices: US+ xczu17eg

25

Conclusions
Sliding-window statistics on streaming data is an important application domain

ECM Sketches offer error bound in common queries and are HW friendly

A range of efficient accelerators is possible and offer 5-10x compared to
multithreaded SW

Guaranteed or best-effort operation? Cost vs Error tolerance tradeoff!

Additional resources in modern FPGAs can be used to implement better ECM
sketches: larger time window and/or tighter error bounds ε and δ

26

Thank you!

Questions?

27

This work was supported in part by EU projects:
• FP7 Qualimaster (#619525)
• FET-HPC EXTRA (#671653)
• Marie Sklodowska-Curie MSCA-COFUND-2017 project AQuViDa (#665667)

