Data stream statistics over sliding windows:
How to summarize 150 Million updates per
second on a single node

Grigorios ChrysosT, Odysseas Papapetrou, Dionisios PnevmatikatosT,

Apostolos DollasT, Minos Garofalakistx*

TTechnical University of Crete, Greece

TEindhoven University of Technology, Netherlands

x*ATHENA Research and Innovation Center, Greece

Why process data streams in real-time?

Real time, continuous, high-volume data streams:
 Network monitoring for DoS attacks

* Monitoring market data to guide algorithmic trading
* Adaptive online advertising, etc.

Too big to store in memory => build approximate sketch synopses

Our focus here: Exponential Count-Min (ECM) sketches
 Papapetrou et al [VLDB12, VLDBJ15]

e Space and time efficient

* Support frequency and inner product queries

 Bounded error data structures

Contribution: Explore ECM Sketch acceleration architectures on FPGA

Outline

 ECK Sketch Primer
e ECM Acceleration Architectures
e Evaluation

* Conclusions

Example: Distribution statistics at routers

* Maintain sliding-window data stream statistics

e IP address Timestamp
L T (msec)
== i 194.42.1.1 0

T 194.44.2.6 2

B 194.42.1.1 4

IP counters oo 590 .40.41.4 .

ip freq. = B194.42.1.1 8
194.42.1.1 2 8

194.44.2.6 0 € N220.40.41.4 999

220.40.41.4 1 S §222.1.34.7 1001

222.1.34.7 1 = 194.42.1.1 1003

194.42.1.1 1009

ECM Sketch Primer

e Sketch is a set of d hash functions f1, f2, ..., fd and a 2-
dimensional array of w x d “counters”

 “Counter” is an Exponential Histogram structure (space efficient for
large time windows)

* For each incoming key:
* |s hashed d times to select which EH to update in each of the d
rows
 d EHs are updated

ECM Sketch

132.1.3.4
observed
at time 31

fa

w columns

+1,t

+1,t

+1,t

SMOJ p

w columns

A 4

a

ECM Sketch fi +1t
132.1.3.4 12 Lt Q
observed %
at time 31
fq +1,t l
Updating the individual EHs
Level 2 Level 1 Level O
size=22 size=21 size=20
Before 4 2 2 1 |1
After 4 2 2 1 |1 1
Invariant 2 invalidated: 3 buckets of size 1
1st merge 4 2 2 2 1
2nd merge 4 4 2 1

TimeO

14

19 23 26 28 31

Sizing ECM Sketches

ECM sketch provides frequency estimates with an error less than €*N,
with probability at least 1 - 6
N denotes the length of the sliding window

ECM Sketch parameters:
» Number of rows: d = [In 1/6]
» Number of Exponential Histograms (EHs) in each line : w = [e/g]

» Number of positions at each bucket level: k = [1/¢]
» Number of bucket levels for each EH: L >= O(log(2N/k) + 1)

Update complexity: O(logN)

Amortized complexity is constant, expected 2 merges per update

Outline

* ECK sketch primer
e ECM Acceleration Architectures
e Evaluation

* Conclusions

Accelerator Architecture #1

ECM Sketches are 3-D structuresd x w x L

- Only one EH per row active at any time

- Have d independent structures

- Group data for each of the w EHs of a ECM row in BRAMSs
- Update takes >=1 cycle, but pipelined!

Result:

+ Fully pipelined, guaranteed throughput design

- Worst case design: each EH has L pipeline stages, only 2 active on
the average

Fully pipelined architecture (FC)

Windbw Size

lllllllllllllllllllllll

t A)

lllllllllllllllllllllll

ECM Row d

ECM Row 2

ECM Row 1

F5
=
Bucket Level #1

45| 40

F— — — — — — — —] — — — — — — — ———+

Problem: Did not fit in Convey V6 FPGA due to high BRAM use

Accelerator Architecture #2

Our Convey HC-2ex platform uses Virtex6 devices
=> Not particularly large devices
Together with “shell”, the FC architecture did not fit
BRAM space was the bottleneck

Go for space efficiency:
BRAMSs underused (w is 55, minimum BRAM rows is 512)
Amortized update cost is 2 => most pipelined levels are idle!

Key idea to exploit amortized ECM update cost

Hash
Func

—>»| BL#1 9 BL#2 /»ee e BLHL-1 /| BL#L

V

3 BL#1 » ECM Worker

Hash
Func

CAUTION:
Space: mapped L-1 level counters into one worker (BRAM size?)
Multiple hits in the same row => more work for worker
Multiple hits in the same EH => more work for worker

ECM Worker Internal Structure

_ —— ECM Worker
Window
Size
» | 45| 40 28 | 26
New Merge
FIFO I v
Tuple —» —>
i 2| |5 2| | g
EER I 3 3
> | > S 1|3 RN
< < << <<
Update

> Gpires D

MZ—rmT—"T

@ m2O

Provide additional memory

Cost-Aware architecture (CA) & processing BW

Window I e ‘: ECM Worker #0
1ze |
| Hash .EHd] Bucket L,
i > Fune Level #1 | ECM Worker #1
i ECM row 1 i
Tuple— _____________E ______________ .

., ECM Worker #P-1
- ECM Worker #P

: Hash EH Id Bucket :
— Level #1 i

|
i ECM row d

— e e — — —— —— —— —— —— —— —— —— —— —— —— —— —— — —— — — — — — — —

15

Now we can play:

One parameter: how many bucket to instantiate before Worker
* More levels => better tolerance to skewed workloads

What about LARGE windows?
L becomes large BUT update load exponentially decreases
=> store in DRAM!
DRAM is slower than BRAM => need to get there infrequently

Hybrid Architecture

Window

— ECM FrontStage #1

Size

Tuple—

>8] .. [3]1pEpdr

Dmrﬂx mzZ—rmov—"T
Dmrﬂx MmZ—rmu=-—"T

v

v

i

Bucket Level #K

Alowan
Aows|n

DRAM

DQI‘HW mZ—rmv—"7 |

- ECM BackStage ﬂ

CAUTION:
Choose K carefully so that DRAM BW is sufficient most of the time

v

las[a0] ... [28]26]»ExpD»
, Hash | =1 =] [=] [=
Func 1 sl EIREl(E

Bucket Level #1

— ECM FrontStage #d

+ >

los]92] ... [76]asprGxpD»
> Hash EHl (2] [Z].[2] |2
Func d dEL(EARdEL(E

A

> BB . [l G

Domm mzZ—-rmo-—"T |
Domm MZ—-rmuv—"T0 |

BucketLeveI#f

v

v

M

Aowsn
Aowan

_>
Do p14] ... [6[5prEp>
_}

Bucket Level #K

DQI‘I‘IW mZ—-—rmv—7T |

Domx mz—rm'ﬂ—'u|

Can we Exceed 1 tuple per cycle?

All architectures so far assume input of one tuple per cycle

What if | have T input tuples per cycle?
 Hash d*T tuples

e Update d*T EHs
e |f d*T << #EHs, chances are good that different EHs will be updated

Corollaries:
e Cannot group into d rows (d << d*T)
* Multiple updates to same EH at same cycle are possible!

> 1 tuple per cycle: Multithreaded Architecture

d*T o ~Hybrid
hashing ICN . ybr|d pe|e Backstage

Tuple
#1

g

ECM BackStage

ew ECM FrontStage #T*d

Tt;gle I wd ECM FrontStage #T * d

Extra EH Struct. #T * d

“overflow” pipeline

19

Outline

* ECK sketch primer
e ECM Acceleration Architectures
e Evaluation

* Conclusions

20

System implementation

System Parameters
e =0.05, 6 =0.05
w=55d=3, k=11
CA architecture P was set to 6 (2 workers per row)
Hybrid: K =5 (bucket levels before DRAM)
MT: K=5, T =3, #FrontStages = 10

Target platform
Convey HC-2ex, two six-core Xeon E5-2640 processors, 128GB
and four Xilinx Virtex-6 LX760 FPGAs (use only one)

» Shell logic clock fixed at 150MHz

» 474K LUTs, 948K flip flops, and 1440x18 Kbit BRAMSs

Evaluation

Five Input Datasets
v' Crawdad SNMP Fall 03/04 [11]
v' CAIDA Anonymized Internet Traces 2011
v' WC, the data set from world cup98 [2]
v" Two randomly generated traces

Software baseline
 Reference software from Papapetrou et al. [VLDBJ15]
 Multi-thread parallelized version of the reference SW (lock limited)
FPGA versions
* Implemented & tested on Convey

Performance comparison (single FPGA)

Dataset

#Tuples

Update Rate (Million (10°) Tuples/sec)

SWx1/x24 | FP CA | Hybrid | MT
Random 10% 10.6/16.4 | 1501 | 145.1 101.3 | 178.2
Random?2 10° 10.8/19.9 | 150t | 147.3 | 101.2 | 177.8
SNMP 3.1x10" | 11.4/26.6 | 150+ | 141.1 101.3 | 173.0
CAIDA 10° 10.2/19.6 | 1501 | 1479 | 101.2 | 1833
WC 10°% 12.2/24.6 | 150t | 147.1 | 101.1 | 148.5
Note:

SW performance is between 10-27 Mtuples/sec
T FP operating frequency is estimated
FP performance is guaranteed, {CA, Hybrid, MT} are best effort

Resource utilization

virtex6 FP CA Hybrid MT
Resources
LUTs 137.9K/29% 22.3K/5% 86,3K/18% 223.3K/47%
FFs 57.0K/6% 5.7K/1% 38.5K /4% 141.6K/15%
BRAMs 1071/74% 357/25% 651/45% 847/59%

Numbers DO NOT include the “shell” logic

CA is more cost effective than FP (6x in logic, 3x in BRAMSs)
MT cost is significant, Hybrid is affordable

FP & CA are the best overall options

24

Performance on Recent Devices: US+ xczul7/eg

UltraScale FP CA Hybrid MT
Resources
LUT 62.6K/15% 26.1K/6% 35.8K/8.5% 371.6K/87%
FF 21.5K/2% 8. 7TK/1% 6.8K/1% 110.4K/13%
BRAM 535/67% 220/28% 168/21% 504/63%
Freq (MHz) 260 220 244 170
Performance
Menrles/seo) 260 214 165 198
Note:

Post P&R tool result
FP is affordable, CA is even better (in cost)!
Hybrid and MT are not really worth it

Conclusions

Sliding-window statistics on streaming data is an important application domain
ECM Sketches offer error bound in common queries and are HW friendly

A range of efficient accelerators is possible and offer 5-10x compared to
multithreaded SW

Guaranteed or best-effort operation? Cost vs Error tolerance tradeoff!

Additional resources in modern FPGAs can be used to implement better ECM
sketches: larger time window and/or tighter error bounds € and 6

Thank youl!

Questions?

This work was supported in part by EU projects:
 FP7 Qualimaster (#619525)
e FET-HPC EXTRA (#671653)

 Marie Sklodowska-Curie MSCA-COFUND-2017 project AQuViDa (#665667)

27

