
11

Fletcher: A Framework to Efficiently
Integrate FPGA Accelerators with

Apache Arrow
@ FPL2019, Barcelona, September 11, 2019

Johan Peltenburg1, Jeroen van Straten1, Lars Wijtemans1

Lars T.J. van Leeuwen1, Zaid Al-Ars1, H. Peter Hofstee2

1. Delft University of Technology, Netherlands
2. IBM, Austin, Texas, USA

Thanks to our supporters:

Fitoptivis European ECSEL project
no. ECSEL2017-1-737451

Xilinx

22

Outline
● The challenge of FPGA integration with

Big Data Analytics
● Overcoming serialization bottlenecks

with Apache Arrow
● Fletcher
● Mini-tutorial (if time)
● Results
● Conclusion & future work

33

Write a host-side
C lib

Byte or even
bit-level control

of data structure
In memory

An FPGA Accelerator Dev. Perspective

High-performance
datapath

Structs, unions,
bitspecs,
padding

Sculpt
datastructure to

feed datapath
efficiently

01001011

44

A Big Data Analytics Dev. Perspective:

Source: https://spark.apache.org/

● DataFrame: like a database table or excel spreadsheet, but...

● Huge. Typically in the order of GiBs to TiBs.
● Distributed over multiple worker nodes (also in storage).
● Operations on it build Directed Acyclic Graphs (DAGS) and are lazily evaluated.
● DAGs are optimized, planned and scheduled to exectue in parallel over a cluster.
● Resilient to node failure, provides automatic recovery and continuation.

● What is all that computer scientist magic that makes this possible?

55

Big Data Analytics SW Ecosystem
Frameworks for

storage, scalability,
resilience, analysis,

etc..

Software
languages
& run-times

66

A string

String size
Pointer to char buffer

Internal char array
(optionally used)

Optionally allocated
char array

JVM object header

Hash cache
UTF-16 Array reference

UTF16 array

JVM array object header

Python variable length
object header

Hash
State

Variable length
character array

FPGAPython

L
e

n
g

th

C
h

ar
ac

te
rs

JavaC++

77

Serialization

Serialized
collection in

shared memory
or IPC message

Collection X in
Memory of
Process A

Collection X in
Memory of
Process B

● Iterate over all objects in collection (data is big)
● Traverse all object graphs (memory latency)
● Copy fields to some intermediate format both A and B understand (bandwidth lost)
● Reconstruct objects in B ((de)allocation overhead)

...

...

...Deserialize...Serialize...

88

I/O bandwidth catching up

[1] F. Kruger, “CPU Bandwidth The Worrisome 2020 Trend,” Mar. 2016. [Online]. Available: https://blog.westerndial.com/cpu-bandwidth-the-
worrisome-2020-trend/

99

Relative impact on accelerators

NON-FUNCTIONAL

CPU compute
time
(De)serialize / copy
time
Accelerator compute
time

Original process on CPU:

Process on GPGPU/FPGA with serialization (potentially, but not necessarily, exaggerated)

Desired profile:

NON-FUNCTIONAL

Serialization throughput on collection of Java (OpenJDK) objects on POWER8 [1]:

[2] J. Peltenburg, A. Hesam, and Z. Al-Ars, “Pushing Big Data into Accelerators: Can the JVM Saturate Our
Hardware?” in International Conference on High Performance Computing. Springer, 2017, pp. 220–236.

1010

Overcoming serialization bottlenecks
● In-memory formats determined by:

– Programming languages
● Run-time system design choices
● Standard libraries

– Algorithms
– Programmers

● Increased heterogeneity more IPC more serialization overhead→ more IPC → more serialization overhead → more IPC → more serialization overhead
● What if data is…

– In a standardized format?
● That every language can use (through libraries or otherwise).

– As contiguous as possible?
● We can move it using large bursts, no pointer chasing, less misalignment overhead

1111

Apache Arrow[3]

● Standardized representation in-memory – Common Data Layer
● Columnar format

– Hardware friendly while iterating over entries in single column (SIMD, caches, etc…)
– Better for many algorithms, worse for some others.

● Libraries and APIs for 10+ languages to build and access data sets (zero-copy)
[3] The Apache Software Foundation,
“Apache Arrow,” 2018. [Online].
Available: https://arrow.apache.org

1212

Arrow in-
memory dataset,
trivial example

Index A B C

0 1.33f ola {1, 3.14}

1 7.01f fpl {5, 1.41}

2 ∅ @upc {3, 1.61}

Index Value

0 1.33f

1 7.01f

2 X

Index Offset

0 0

1 3

2 6

3 10

Offset Value

0 o

1 l

2 a

3 f

4 p

5 l

6 @

7 u

8 p

9 c

Index Value

0 1

1 5

2 3

Index Value

0 3.14

1 1.41

2 1.61

Index Valid

0 1

1 1

2 0

Schema MySchema {
 A: Float (nullable)
 B: List<Char>
 C: Struct{
 E: Int16
 F: Double
 }
}

Arrow terminology:
Schema:

Description of data types
in a RecordBatch

RecordBatch:
Tabular structure
containing Arrow arrays

Arrays:
A RecordBatch “column”.
Combination of Arrow buffers,
can be nested

Buffers:
Contiguous C-like arrays

1313

Integrating FPGA and Arrow

● Arrow ‘turns out’ to be hardware-friendly
– In-memory format clearly specified, to every bit
– Highly contiguous & columnar format

● Iterate over a column in streaming fashion
● Useful for: maps, reductions, filters, etc...

– Parallel accessible format
● E.g. uses offsets, not lengths, for variable length data – we can start anywhere
● Useful for: maps, reductions, filters, etc…

● Backed by a large and ever growing community
● Integration in many BDA frameworks, even without official

format stability
● Can we generate easy-to-use, high throughput hardware

interfaces automatically?

1414

Main
contribution:

Fully open-source
(Apache-2.0),

Vendor agnostic,

Generates
easy-to-use

high-throughput
Interfaces.

Integrate FPGA
accelerators with

Apache Arrow.

1515

Example: Interface for accelerator parsing strings

Typical: Fletcher:

Length
Stream

Char
stream

RecordBatch
Range

Fletcher-generated interface

Memory interfaceMemory interface

Manual implementation
of interface

Byte
Address

Computational part Computational part

Bus
Word

High-throughput:
Number of values

delivered per cycle
configurable

High-throughput:
Number of values

delivered per cycle
configurable

Easy-to use:
Data is delivered as
streams that make

sense w.r.t.
schema field types.

Easy-to use:
Data is delivered as
streams that make

sense w.r.t.
schema field types.

1616

Generated interface overview
● Architecture based on library with streaming primitives

● BufferReader/Writer : Basic unit to read (N) Arrow Buffer elements

● ArrayReader/Writer : Combination of BufferReaders/Writers [1]

– Dictated by the schema field and format specification

– Generated through pure HDL; vendor agnostic

● RecordBatchReader/Writer : Combination of ArrayReaders/Writers

● Mantle : Wraps multiple RecordBatchR/W + bus infrastructure

[4] J. Peltenburg, J. van Straten, M. Brobbel, H. P. Hofstee, and Z. Al-Ars, “Supporting Columnar In-memory Formats on FPGA: The Hardware Design of Fletcher
for Apache Arrow”, in Applied Reconfigurable Computing, Cham: Springer International Publishing, 2019, pp. 32–47.

1717

Index Value

0 1.33f

1 7.01f

2 ∅

Index Valid

0 1

1 1

2 0

Index Offset

0 0

1 3

2 6

3 10

Offset Value

0 o

1 l

2 a

3 f

… ...

Index Value

0 1

1 5

2 3

Index Value

0 3.14

1 1.41

2 1.61

Combining BufferReaders into ArrayReaders
● Arrow Schema &

format spec
dictate how to
combine buffers.

● Passed to
ArrayReaders
through
configuration
string in HDL.

● Seeking the limits
of synthesis
tools :-)

● Over 10k+ random
field types
simulated.

1818

High-level architecture generation: Fletchgen
Arrow support:
☑ RecordBatches

 ☑ Arrays
 ☑ Buffers

● Need syntactically pleasing
interfaces
– Grouping of ArrayReader/Writer

interfaces for RecordBatches
– Stream names must correspond to

schema fields

– Synthesizable HDL too limited
● Need kernel template generation for

kernel implementation in HDL/HLS
● Need simulation
● Need platform integration
● High-level architecture generator:

Fletchgen

1919

Fletcher run-time stack
● Reap the benefits of Arrow:

– Create one accelerator.

– Leverage in any supported
language.

● Fletcher Generated Hardware
Interface is platform agnostic –
requires no IP, tcl scripts, etc…

● Top level with AXI4 interface
available.

2020

Mini-tutorial: Fletcher “Hello, World!”Mini-tutorial: Fletcher “Hello, World!”
● Trivial example:

– Sum a column of integers

● Get to know the toolchain
● More realistic applications:

– Complex types
– More Arrow Arrays
– More input/output RecordBatches

Also on GitHub:
https://github.com/abs-tudelft/fletcher

https://github.com/abs-tudelft/fletcher

2121

Step 1: Create an Arrow SchemaStep 1: Create an Arrow Schema

import pyarrow as pa

number_field = pa.field('number', pa.int64(), nullable=False)
schema = pa.schema([number_field])

metadata = {b'fletcher_mode': b'read',
 b'fletcher_name': b'ExampleBatch'}
schema = schema.add_metadata(metadata)

2222

Step 2: Create a RecordBatchStep 2: Create a RecordBatch

data = [pa.array([1, -3, 3, -7])]
recordbatch = pa.RecordBatch.from_arrays(data, schema)

writer = pa.RecordBatchFileWriter('recordbatch.rb', schema)
writer.write(recordbatch)
writer.close()

(optional, for simulation)

2323

Step 3: Generate the designStep 3: Generate the design

$ fletchgen -n Sum -r recordbatch.rb -s recordbatch.srec -l vhdl dot --sim

Kernel name

RecordBatch input

Memory model file

Design output languages

Generate simulation top-level

2424

Step 4: Implement the kernelStep 4: Implement the kernel
● Start from template.
● Use your favorite tools:

– Custom HDL

– Vivado HLS

– …

● Kernel interfaces:
– AXI4-lite MMIO

– Command streams to generated
interface

– Data streams from generated
interface

int sum(RecordBatchMeta ExampleBatch_meta,
 hls::stream<f_int64>& ExampleBatch_number) {
 ...
}

2525

Step 5: Simulate the designStep 5: Simulate the design

$ vhdeps -i path/to/fletcher/hardware -i . ghdl SimTop_tc

Fletcher hardware libs

Generated simulation top-level

Simulator target
GHDL, Questa, ...

...

../../src/ieee2008/numeric_std-body.vhdl:1743:7:@0ms:(assertion warning): NUMERIC_STD.">=": metavalue detected, returning FALSE

../../src/ieee2008/numeric_std-body.vhdl:3034:7:@10ns:(assertion warning): NUMERIC_STD.TO_INTEGER: metavalue detected, returning 0

../../src/ieee2008/numeric_std-body.vhdl:3034:7:@10ns:(assertion warning): NUMERIC_STD.TO_INTEGER: metavalue detected, returning 0

../../src/ieee2008/numeric_std-body.vhdl:1871:7:@300ns:(assertion warning): NUMERIC_STD."=": metavalue detected, returning FALSE

../../src/ieee2008/numeric_std-body.vhdl:1774:7:@300ns:(assertion warning): NUMERIC_STD."=": metavalue detected, returning FALSE

Return register 0: 0xFFFFFFFA
Return register 1: 0xFFFFFFFF

/home/user/fletcher/examples/sum/hardware/vhdl/SimTop_tc.vhd:342:5:@1650ns:(report note): Stimuli done.

Final summary:
 * PASSED simtop_tc
Test suite PASSED

https://github.com/abs-tudelft/vhdeps

2626

Step 6: Write host-side softwareStep 6: Write host-side software
import pyarrow as pa
import pyfletcher as pf

...

 platform = pf.Platform()
 platform.init()

 context = pf.Context(platform)
 context.queue_record_batch(batch)
 context.enable()

 kernel = pf.Kernel(context)
 kernel.start()
 kernel.wait_for_finish()

...

2727

Step 7: Target a PlatformStep 7: Target a Platform

● Supported platforms:
– OpenPOWER CAPI SNAP

● If implementation allows,
directly streamable from
host-memory using virtual
addresses on FPGA

– AWS EC2 F1
● Requires copy to on-board

memory

2828

Regular Expression Matching

● Given N strings

● Match M regular expressions

● Count matches for each regexp

● Example:

2929

Regex throughput/speedup result

3030

Regex on 1GiB of tweet-like strings

3131

Writing random length (0-255) strings

3232

K-Means clustering, internal iteration bandwidth & total run-time

AWS EC2 F1 only

3333

Conclusion
● Big data analytics systems increasingly heterogeneous – many different tools in many

different technologies.

● Apache Arrow: one in-memory format for IPC through shared memory for most
languages / runtimes / technologies.

● Fletcher: Arrow format allows us to generate high-throughput, easy-to-use hardware
interfaces for FPGA.

● Streaming kernels benefit the most, more computationally oriented kernels less.

● Paves the way for more efficient FPGA accelerator integration with any of the supported
big data analytics tools.

3434

Spin-off projects & future work
● Dynamic Arrow Buffers in Hardware to support buffer resizing (Lars Wijtemans)

● Parquet-to-Arrow decoder and decompressor (Lars van Leeuwen, Jian Fang)

● HLS integration for map, reduce, SQL-defined filters (Erwin de Haan)

● Data-defined architecture.

● Can we turn this into a closed-loop self-optimizing interface generation and profiling
framework?

– Long-running workload: plenty of time to synthesize.

– We only need one node of a cluster to do it.

– Are the gains worth the cost?

3535

Thank you for your attention!
References:
[1] F. Kruger, “CPU Bandwidth The Worrisome 2020 Trend,” Mar. 2016. [Online]. Available: https://blog.westerndial.com/cpu-bandwidth-the-worrisome-2020-trend/
[2] J. Peltenburg, A. Hesam, and Z. Al-Ars, “Pushing Big Data into Accelerators: Can the JVM Saturate Our Hardware?” in International Conference on High Performance
Computing. Springer, 2017, pp. 220–236.
[3] The Apache Software Foundation, “Apache Arrow,” 2018. [Online]. Available: https://arrow.apache.org
[4] J. Peltenburg, J. van Straten, M. Brobbel, H. P. Hofstee, and Z. Al-Ars, “Supporting Columnar In-memory Formats on FPGA: The Hardware Design of Fletcher for
Apache Arrow”, in Applied Reconfigurable Computing, Cham: Springer International Publishing, 2019, pp. 32–47.

● Regular Expression matching example / benchmark:
https://github.com/abs-tudelft/fletcher-example-regexp
● K-Means clustering example/benchmark:
https://github.com/abs-tudelft/fletcher-example-kmeans
● Writing strings to Arrow format using CAPI 2.0 and SNAP @ 10 GB/s:
https://github.com/abs-tudelft/fletcher/blob/develop/examples/stringwrite
● Posit arithmetic on FPGA, BLAS and PairHMM accelerators by Laurens van Dam:
https://github.com/lvandam/posit_blas_hdl
https://github.com/lvandam/pairhmm_posit_hdl_arrow

Open-sourced example projects / existing applications:

https://github.com/abs-tudelft/fletcher

Thanks to our supporters:

Fitoptivis European ECSEL project
no. ECSEL2017-1-737451

Xilinx

https://blog.westerndial.com/cpu-bandwidth-the-worrisome-2020-trend/
https://arrow.apache.org/
https://github.com/abs-tudelft/fletcher-example-regexp
https://github.com/abs-tudelft/fletcher-example-kmeans
https://github.com/abs-tudelft/fletcher/blob/develop/examples/stringwrite
https://github.com/lvandam/posit_blas_hdl
https://github.com/lvandam/pairhmm_posit_hdl_arrow
https://github.com/abs-tudelft/fletcher

3636

Area utilization

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

