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Outline
● The challenge of FPGA integration with 

Big Data Analytics 
● Overcoming serialization bottlenecks 

with Apache Arrow
● Fletcher 
● Mini-tutorial (if time)
● Results
● Conclusion & future work
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A Big Data Analytics Dev. Perspective:

Source: https://spark.apache.org/

● DataFrame: like a database table or excel spreadsheet, but...

● Huge. Typically in the order of GiBs to TiBs.
● Distributed over multiple worker nodes (also in storage).
● Operations on it build Directed Acyclic Graphs (DAGS) and are lazily evaluated.
● DAGs are optimized, planned and scheduled to exectue in parallel over a cluster.
● Resilient to node failure, provides automatic recovery and continuation.

● What is all that computer scientist magic that makes this possible?
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Big Data Analytics SW Ecosystem
Frameworks for

storage, scalability, 
resilience, analysis, 

etc..

Software 
languages 
& run-times
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Serialization

Serialized
collection in

shared memory 
or IPC message

Collection X in 
Memory of 
Process A

Collection X in 
Memory of 
Process B 

● Iterate over all objects in collection (data is big)
● Traverse all object graphs (memory latency)
● Copy fields to some intermediate format both A and B understand (bandwidth lost)
● Reconstruct objects in B ((de)allocation overhead)

...

...

...Deserialize...Serialize...
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I/O bandwidth catching up

[1] F. Kruger, “CPU Bandwidth The Worrisome 2020 Trend,” Mar. 2016. [Online]. Available: https://blog.westerndial.com/cpu-bandwidth-the-
worrisome-2020-trend/
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Relative impact on accelerators

NON-FUNCTIONAL

CPU compute 
time
(De)serialize / copy 
time
Accelerator compute 
time

Original process on CPU:

Process on GPGPU/FPGA with serialization (potentially, but not necessarily, exaggerated)

Desired profile:

NON-FUNCTIONAL

Serialization throughput on collection of Java (OpenJDK) objects on POWER8 [1]:

[2] J. Peltenburg, A. Hesam, and Z. Al-Ars, “Pushing Big Data into Accelerators: Can the JVM Saturate Our 
Hardware?” in International Conference on High Performance Computing. Springer, 2017, pp. 220–236.
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Overcoming serialization bottlenecks
● In-memory formats determined by:

– Programming languages
● Run-time system design choices
● Standard libraries

– Algorithms
– Programmers

● Increased heterogeneity  more IPC  more serialization overhead→ more IPC → more serialization overhead → more IPC → more serialization overhead
● What if data is…

– In a standardized format?
● That every language can use (through libraries or otherwise).

– As contiguous as possible?
● We can move it using large bursts, no pointer chasing, less misalignment overhead
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Apache Arrow[3]

● Standardized representation in-memory – Common Data Layer
● Columnar format

– Hardware friendly while iterating over entries in single column (SIMD, caches, etc…)
– Better for many algorithms, worse for some others.

● Libraries and APIs for 10+ languages to build and access data sets (zero-copy)
[3] The Apache Software Foundation, 
“Apache Arrow,” 2018. [Online]. 
Available: https://arrow.apache.org
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Arrow in-
memory dataset, 
trivial example

Index A B C

0 1.33f ola {1, 3.14}

1 7.01f fpl  {5, 1.41} 

2 ∅ @upc  {3, 1.61} 

Index Value

0 1.33f

1 7.01f

2 X

Index Offset

0 0

1 3

2 6

3 10

Offset Value

0 o

1 l

2 a

3 f

4 p

5 l

6 @

7 u

8 p

9 c

Index Value

0 1

1 5

2 3

Index Value

0 3.14

1 1.41

2 1.61

Index Valid

0 1

1 1

2 0

Schema MySchema {
  A: Float (nullable)
  B: List<Char>
  C: Struct{
       E: Int16
       F: Double
     }
}

Arrow terminology:
Schema:

Description of data types 
in a RecordBatch

RecordBatch:
Tabular structure
containing Arrow arrays

Arrays:
A RecordBatch “column”.
Combination of Arrow buffers,
can be nested

Buffers: 
Contiguous C-like arrays
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Integrating FPGA and Arrow

● Arrow ‘turns out’ to be hardware-friendly
– In-memory format clearly specified, to every bit
– Highly contiguous & columnar format

● Iterate over a column in streaming fashion
● Useful for: maps, reductions, filters, etc...

– Parallel accessible format
● E.g. uses offsets, not lengths, for variable length data – we can start anywhere
● Useful for: maps, reductions, filters, etc…

● Backed by a large and ever growing community
● Integration in many BDA frameworks, even without official 

format stability
● Can we generate easy-to-use, high throughput hardware 

interfaces automatically?
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Main 
contribution:

Fully open-source 
(Apache-2.0),

Vendor agnostic,

Generates 
easy-to-use 

high-throughput 
Interfaces.

Integrate FPGA 
accelerators with 

Apache Arrow.



1515

Example: Interface for accelerator parsing strings

Typical: Fletcher:

Length
Stream

Char
stream

RecordBatch 
Range

Fletcher-generated interface

Memory interfaceMemory interface

Manual implementation 
of interface

Byte 
Address

Computational part Computational part 

Bus 
Word

High-throughput:
Number of values

delivered per cycle 
configurable

High-throughput:
Number of values

delivered per cycle 
configurable

Easy-to use:
Data is delivered as
streams that make

sense w.r.t. 
schema field types.

Easy-to use:
Data is delivered as
streams that make

sense w.r.t. 
schema field types.
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Generated interface overview
● Architecture based on library with streaming primitives

● BufferReader/Writer : Basic unit to read (N) Arrow Buffer elements

● ArrayReader/Writer : Combination of BufferReaders/Writers [1]

– Dictated by the schema field and format specification

– Generated through pure HDL; vendor agnostic

● RecordBatchReader/Writer : Combination of ArrayReaders/Writers

● Mantle : Wraps multiple RecordBatchR/W + bus infrastructure

[4] J. Peltenburg, J. van Straten, M. Brobbel, H. P. Hofstee, and Z. Al-Ars, “Supporting Columnar In-memory Formats on FPGA: The Hardware Design of Fletcher 
for Apache Arrow”, in Applied Reconfigurable Computing, Cham: Springer International Publishing, 2019, pp. 32–47.
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Index Value

0 1.33f

1 7.01f

2 ∅

Index Valid

0 1

1 1

2 0

Index Offset

0 0

1 3

2 6

3 10

Offset Value

0 o

1 l

2 a

3 f

… ...

Index Value

0 1

1 5

2 3

Index Value

0 3.14

1 1.41

2 1.61

Combining BufferReaders into ArrayReaders
● Arrow Schema & 

format spec 
dictate how to 
combine buffers.

● Passed to 
ArrayReaders 
through 
configuration 
string in HDL. 

● Seeking the limits 
of synthesis 
tools :-)

● Over 10k+ random 
field types 
simulated.
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High-level architecture generation: Fletchgen
Arrow support:
☑ RecordBatches

 ☑ Arrays
 ☑ Buffers

● Need syntactically pleasing 
interfaces
– Grouping of ArrayReader/Writer 

interfaces for RecordBatches
– Stream names must correspond to 

schema fields

– Synthesizable HDL too limited
● Need kernel template generation for 

kernel implementation in HDL/HLS
● Need simulation
● Need platform integration
● High-level architecture generator: 

Fletchgen
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Fletcher run-time stack
● Reap the benefits of Arrow:

– Create one accelerator.

– Leverage in any supported 
language.

● Fletcher Generated Hardware 
Interface is platform agnostic – 
requires no IP, tcl scripts, etc…

● Top level with AXI4 interface 
available.
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Mini-tutorial: Fletcher “Hello, World!”Mini-tutorial: Fletcher “Hello, World!”
● Trivial example:

– Sum a column of integers

● Get to know the toolchain
● More realistic applications:

– Complex types
– More Arrow Arrays
– More input/output RecordBatches

Also on GitHub:
https://github.com/abs-tudelft/fletcher

https://github.com/abs-tudelft/fletcher
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Step 1: Create an Arrow SchemaStep 1: Create an Arrow Schema

import pyarrow as pa

number_field = pa.field('number', pa.int64(), nullable=False)
schema = pa.schema([number_field])

metadata = {b'fletcher_mode': b'read',
            b'fletcher_name': b'ExampleBatch'}
schema = schema.add_metadata(metadata)
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Step 2: Create a RecordBatchStep 2: Create a RecordBatch

data = [pa.array([1, -3, 3, -7])]
recordbatch = pa.RecordBatch.from_arrays(data, schema)

writer = pa.RecordBatchFileWriter('recordbatch.rb', schema)
writer.write(recordbatch)
writer.close()

(optional, for simulation)
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Step 3: Generate the designStep 3: Generate the design

$ fletchgen -n Sum -r recordbatch.rb -s recordbatch.srec -l vhdl dot --sim

Kernel name

RecordBatch input

Memory model file

Design output languages

Generate simulation top-level
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Step 4: Implement the kernelStep 4: Implement the kernel
● Start from template.
● Use your favorite tools:

– Custom HDL

– Vivado HLS

– …

● Kernel interfaces:
– AXI4-lite MMIO

– Command streams to generated 
interface

– Data streams from generated 
interface

int sum(RecordBatchMeta ExampleBatch_meta, 
        hls::stream<f_int64>& ExampleBatch_number) {
  ...
}
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Step 5: Simulate the designStep 5: Simulate the design

$ vhdeps -i path/to/fletcher/hardware -i . ghdl SimTop_tc

Fletcher hardware libs

Generated simulation top-level

Simulator target
GHDL, Questa, ...

...

../../src/ieee2008/numeric_std-body.vhdl:1743:7:@0ms:(assertion warning): NUMERIC_STD.">=": metavalue detected, returning FALSE

../../src/ieee2008/numeric_std-body.vhdl:3034:7:@10ns:(assertion warning): NUMERIC_STD.TO_INTEGER: metavalue detected, returning 0

../../src/ieee2008/numeric_std-body.vhdl:3034:7:@10ns:(assertion warning): NUMERIC_STD.TO_INTEGER: metavalue detected, returning 0

../../src/ieee2008/numeric_std-body.vhdl:1871:7:@300ns:(assertion warning): NUMERIC_STD."=": metavalue detected, returning FALSE

../../src/ieee2008/numeric_std-body.vhdl:1774:7:@300ns:(assertion warning): NUMERIC_STD."=": metavalue detected, returning FALSE

Return register 0: 0xFFFFFFFA
Return register 1: 0xFFFFFFFF

/home/user/fletcher/examples/sum/hardware/vhdl/SimTop_tc.vhd:342:5:@1650ns:(report note): Stimuli done.

Final summary:
 * PASSED  simtop_tc
Test suite PASSED

https://github.com/abs-tudelft/vhdeps
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Step 6: Write host-side softwareStep 6: Write host-side software
import pyarrow as pa
import pyfletcher as pf

...

    platform = pf.Platform()
    platform.init()

    context = pf.Context(platform)
    context.queue_record_batch(batch)
    context.enable()

    kernel = pf.Kernel(context)
    kernel.start()
    kernel.wait_for_finish()

...
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Step 7: Target a PlatformStep 7: Target a Platform

● Supported platforms:
– OpenPOWER CAPI SNAP

● If implementation allows, 
directly streamable from 
host-memory using virtual 
addresses on FPGA

– AWS EC2 F1
● Requires copy to on-board

memory
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Regular Expression Matching

● Given N strings

● Match M regular expressions

● Count matches for each regexp

● Example:
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Regex throughput/speedup result
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Regex on 1GiB of tweet-like strings
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Writing random length (0-255) strings
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K-Means clustering, internal iteration bandwidth & total run-time

AWS EC2 F1 only
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Conclusion
● Big data analytics systems increasingly heterogeneous – many different tools in many 

different technologies.

● Apache Arrow: one in-memory format for IPC through shared memory for most 
languages / runtimes / technologies.

● Fletcher: Arrow format allows us to generate high-throughput, easy-to-use hardware 
interfaces for FPGA.

● Streaming kernels benefit the most, more computationally oriented kernels less.

● Paves the way for more efficient FPGA accelerator integration with any of the supported 
big data analytics tools.
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Spin-off projects & future work
● Dynamic Arrow Buffers in Hardware to support buffer resizing (Lars Wijtemans)

● Parquet-to-Arrow decoder and decompressor (Lars van Leeuwen, Jian Fang)

● HLS integration for map, reduce, SQL-defined filters (Erwin de Haan)

● Data-defined architecture.

● Can we turn this into a closed-loop self-optimizing interface generation and profiling 
framework?

– Long-running workload: plenty of time to synthesize.

– We only need one node of a cluster to do it. 

– Are the gains worth the cost?
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Thank you for your attention!
References:
[1] F. Kruger, “CPU Bandwidth The Worrisome 2020 Trend,” Mar. 2016. [Online]. Available: https://blog.westerndial.com/cpu-bandwidth-the-worrisome-2020-trend/
[2] J. Peltenburg, A. Hesam, and Z. Al-Ars, “Pushing Big Data into Accelerators: Can the JVM Saturate Our Hardware?” in International Conference on High Performance 
Computing. Springer, 2017, pp. 220–236.
[3] The Apache Software Foundation, “Apache Arrow,” 2018. [Online]. Available: https://arrow.apache.org
[4] J. Peltenburg, J. van Straten, M. Brobbel, H. P. Hofstee, and Z. Al-Ars, “Supporting Columnar In-memory Formats on FPGA: The Hardware Design of Fletcher for 
Apache Arrow”, in Applied Reconfigurable Computing, Cham: Springer International Publishing, 2019, pp. 32–47.

● Regular Expression matching example / benchmark:
https://github.com/abs-tudelft/fletcher-example-regexp
● K-Means clustering example/benchmark:
https://github.com/abs-tudelft/fletcher-example-kmeans
● Writing strings to Arrow format using CAPI 2.0 and SNAP @ 10 GB/s: 
https://github.com/abs-tudelft/fletcher/blob/develop/examples/stringwrite
● Posit arithmetic on FPGA, BLAS and PairHMM accelerators by Laurens van Dam:
https://github.com/lvandam/posit_blas_hdl
https://github.com/lvandam/pairhmm_posit_hdl_arrow

Open-sourced example projects / existing applications:

https://github.com/abs-tudelft/fletcher

Thanks to our supporters:

Fitoptivis European ECSEL project 
no. ECSEL2017-1-737451

Xilinx
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https://github.com/abs-tudelft/fletcher-example-regexp
https://github.com/abs-tudelft/fletcher-example-kmeans
https://github.com/abs-tudelft/fletcher/blob/develop/examples/stringwrite
https://github.com/lvandam/posit_blas_hdl
https://github.com/lvandam/pairhmm_posit_hdl_arrow
https://github.com/abs-tudelft/fletcher
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Area utilization
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