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Stencil Computations and Applications

Stencils are used in ~30% of HPC applications:
• Fluid dynamics, image processing, atmospheric modelling
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Image sources: http://www.flometrics.com/fluid-dynamics/computational-fluid-dynamics/

Naoe, Kensuke et al. "Secure Key Generation for Static Visual Watermarking by Machine Learning in Intelligent Systems and Services." IJSSOE, 2010
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High-order stencil computations are cache unfriendly
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Stencil use in COSMO
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• Dynamical core is the most essential part of the 
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• O (100) different stencil compute motifs

• ~30 variable- and ~70 temporary arrays (3D grids)
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Not another “elementary” stencil talk!



Horizontal Diffusion (“complex” stencil)
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Stencil composition
(Courtesy CSCS/ETHz

and Ronald Luijten)

Laplace

Flux

New value

T. Gysi, T. Grosser, T. Hoefler: MODESTO: Data-centric Analytic Optimization of Complex Stencil Programs on Heterogeneous Architectures, ICS’15
DFG from T. Hoefler
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Alternative Platforms

FPGAs ideal for adapting to rapidly evolving workloads!

Processing 
Units ASICs 
for emerging 
workloads, 
e.g. Google 
TPU

CPUs

FLEXIBILITY

Control 

Unit 

(CU)

Registers

Arithmetic 

Logic Unit 

(ALU)

GPUs FPGAs ASICs

EFFICIENCY
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Heterogeneous Architecture: CPU+FPGA

• Host System
IBM POWER9-16 core 
(64-threads)

Power: IBM AMESTER1

• FPGA board
Xilinx Virtex® 
Ultrascale+™ XCVU3P-2

81https://github.com/open-power/amester

POWER9 AC922 FPGA

CAPI2.0

https://github.com/open-power/amester


Traditional 
I/O Technology

Dionysios Diamantopoulos, IBM Research – Zurich, COOL Chips 2018 9



CAPI Technology Overview

Dionysios Diamantopoulos, IBM Research – Zurich, COOL Chips 2018 9



Accelerator Framework

• Accelerators are acting as peers 
to CPU

• High-performance cache-
coherent link

• An interrupt-based queuing 
mechanism

• Minimal CPU usage (thus power) 
during FPGA use

10https://github.com/open-power/snap

https://github.com/open-power/snap
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AFU Performance
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AFU Performance
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6.3x compared to 1-thread POWER9



AFU Scaling Analysis 
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AFU Scaling Analysis 

13

3.3x with 18x energy efficiency compared to 
1-node POWER9 (16 core)



Accelerator Scaling Prediction

• Goal: Quick prediction for scaling AFUs  on 
different FPGA boards

• Long run-time

• Back-of-the-envelope calculations cannot 
accurately predict complex design behavior

• Heuristics

• Approach: Empirical best-fit model using 
data collected from one device and predict 
for all the devices in an FPGA family

14



Accelerator Scaling Prediction

• Xilinx Ultrascale and Ultrascale+ families

• CAPI enabled

• With and without URAM
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Accelerator Scaling Prediction

• Xilinx Ultrascale and Ultrascale+ families

• CAPI enabled

• With and without URAM

• MRE under 15.2%

• URAM offers more heterogeneity and 
energy-efficiency with scaling
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Future work

• Intra-node multi-FPGA scaling

• Implementation with OpenCAPI and 
HBM

• General purpose COSMO accelerator

• Trans-precision analysis

• Run-time adaptability for other stencils
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Executive Summary

• Motivation: Stencil computation is essential part of HPC applications

• Problem: Limited performance on conventional architectures

• Goal: Study the applicability of compound stencils from real-world weather
prediction application on reconfigurable architectures

• Our contribution: NARMADA
• First implementation and optimization of horizontal diffusion kernel from COSMO application

on modern heterogeneous system

• A data-centric heterogeneous memory hierarchy caching scheme with scalability analysis

• Results
• NARMADA has 6.3x performance compared to a 1-thread performance of the state-of-the-art

IBM POWER9 CPU

• 3.3x performance with 18x energy-efficiency compared to a complete IBM POWER9 node
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