
DynaBurst: Dynamically Assemblying
DRAM Bursts over a Multitude of

Random Accesses
Mikhail Asiatici and Paolo Ienne

Processor Architecture Laboratory (LAP)
School of Computer and Communication Sciences

EPFL

FPL 2019, Barcelona, Spain
11 September 2019

1

Motivation

DDRx
Memory

Memory
Controller

Accelerator

Accelerator

Accelerator

Accelerator

Local
Memory

Local
Memory

Local
Memory

Local
Memory

2

Read accesses: regular, predictable local reuse

Motivation

DDRx
Memory

Memory
Controller

Accelerator

Accelerator

Accelerator

Accelerator

8 beats

64 bits

Miss-Optimized
Memory System

(Nonblocking Cache)?

M. Asiatici and P. Ienne, “Stop Crying Over Your Cache Miss Rate: Handling Efficiently Thousands of Outstanding Misses in FPGAs” ISFPGA 2019
51

2
bi

ts
3

Read accesses: irregular, short, pattern unknown at compile time

Limitations of Prior Work

DDRx
Memory

Accelerator

Accelerator

Accelerator

Accelerator

(1) Useless with multiple, narrow ports
- Reuse opportunities are rare
- Most of DDR burst content is wasted

4

Memory
Controller

Miss-Optimized
Memory System

(Nonblocking Cache)

M. Asiatici and P. Ienne, “Stop Crying Over Your Cache Miss Rate: Handling Efficiently Thousands of Outstanding Misses in FPGAs” ISFPGA 2019

Accelerator

Accelerator

Accelerator

Accelerator

Limitations of Prior Work

DDRx
Memory

Memory
Controller

1 kB

row buffer

banks

Row conflict

- Request reordering
- …but limited view of

future requests (10s)
The access pattern sent to the
memory controller matters!

5
M. Asiatici and P. Ienne, “Stop Crying Over Your Cache Miss Rate: Handling Efficiently Thousands of Outstanding Misses in FPGAs” ISFPGA 2019

Accelerator

Accelerator

Accelerator

Accelerator

Limitations of Prior Work

DDRx
Memory

Memory
Controller

1 kB

row buffer

banks

Row conflict

6
M. Asiatici and P. Ienne, “Stop Crying Over Your Cache Miss Rate: Handling Efficiently Thousands of Outstanding Misses in FPGAs” ISFPGA 2019

- Request reordering
- …but limited view of

future requests (10s)
The access pattern sent to the
memory controller matters!

Limitations of Prior Work

DDRx
Memory

Memory
Controller

Accelerator

Accelerator

Accelerator

Accelerator (2) No care given to access pattern
(2) to the memory controller
→ Up to 60% of bandwidth lost
to row conflicts

(1) Useless with multiple, narrow ports

7
M. Asiatici and P. Ienne, “Stop Crying Over Your Cache Miss Rate: Handling Efficiently Thousands of Outstanding Misses in FPGAs” ISFPGA 2019

Miss-Optimized
Memory System

(Nonblocking Cache)

(1) Useless with multiple, narrow ports
Bursts increase reuse opportunities and
use larger portions of DDR bursts

Key Idea: Bursts of Memory Requests

DDRx
Memory

Memory
Controller

Accelerator

Accelerator

Accelerator

Accelerator (2) No care given to access pattern
(2) to the memory controller
Access pattern becomes locally sequential and
we make use of larger portions of DDR rows,
increasing available bandwidth

(1) Useless with multiple, narrow ports

8

row buffer

DynaBurst

Outline

• Nonblocking Caches and Miss-Optimized Memory Systems
• Top-Level Architecture
• Handling Bursts
• Experimental Setup
• Results
• Conclusion

9

1 MSHR ↔ 1 memory request = 1 cache line
1 subentry ↔ 1 incoming request

MSHR array
tag subentries

Nonblocking Caches
0x1004

External memory

0x100

0x100C

10

miss

0x100 4 C

Cache array
tag data

0x123
0xCA8

0x1F2D5D08706718799CD58F2F566
0xE9C0F7A7697CBA7CDC1A7934E34

0x100: 0x36C2156B751D4EBB940316495CB0x156B0xEBB9

Primary miss
• allocate MSHR
• allocate subentry
• send memory request

Secondary miss
• allocate subentry

MSHR = Miss Status Holding Register

0x1000x36C2156B751D4EBB940316495CB

• MSHRs provide reuse without having to store
the cache line → same result, smaller area

• More MSHRs can be better than a larger cache

Scaling Up Miss Handling

11

=
=
=
=
=
=
=
=

h0 hd-1

Fully-associative array Cuckoo hash tables in BRAMs

Subentry slots statically assigned to MSHRs Dynamic subentry allocation

Subentry bufferMSHR buffer

→ efficient storage and lookup of 10,000s MSHRs and subentries

Traditional nonblocking caches Miss-Optimized Memory System [1]

Outline

• Nonblocking Caches and Miss-Optimized Memory System
• Top-Level Architecture
• Handling Bursts
• Experimental Setup
• Results
• Conclusion

12

56 0x1004

Top-Level Architecture

13

56 0x1004
ID Address

Accelerator

Accelerator

Cr
os

sb
ar

Cache MSHR
buffer

Subentry
buffer

Data
buffer

M
ul

ti-
po

rt
ed

 m
em

or
y

in
te

rf
ac

e

Ex
te

rn
al

 m
em

or
y

co
nt

ro
lle

rmiss

0x1000x10056 0x100: 0x36C2156B751D4EBB940316495CB
Tag Data

Cache MSHR
buffer

Subentry
buffer

Data
buffer

…… …

hit

What’s New in DynaBurst

14

Accelerator

Accelerator

Cr
os

sb
ar

Cache MSHR
buffer

Subentry
buffer

Data
buffer

M
ul

ti-
po

rt
ed

 m
em

or
y

in
te

rf
ac

e

Ex
te

rn
al

 m
em

or
y

co
nt

ro
lle

r

Cache MSHR
buffer

Subentry
buffer

Data
buffer

…… …
Flip-flops → LUTRAM, BRAMMulti-portedVariable-length bursts

Outline

• Nonblocking Caches and Miss-Optimized Memory System
• Top-Level Architecture
• Handling Bursts
• Experimental Setup
• Results
• Conclusion

15

From Single Requests to Bursts

16

Memory space

1 cache line = 1 memory request

MSHR
1 MSHR: 1 memory request
1 subentry: 1 incoming request

From Single Requests to Bursts

17

Memory space

1 cache line

MSHR
1 MSHR: 1 burst = N memory requests
1 subentry: 1 incoming request

Problem: Data wastage

From Single Requests to Bursts

18

Memory space

MSHR
1 MSHR: 1 burst = 1–N memory requests
1 subentry: 1 incoming request

1 cache line

Grouping region Actual burst

1 cache line

From Single Requests to Bursts

19

Memory space

MSHR

DDR
Memory

Output request queue

On a new request:
1) MSHR exists?
2) If yes: request covered

by current burst
bounds?

3) If not: burst still in the
output queue?

On a new request:
1) MSHR exists?
2a) If yes: request covered
2a) by current burst 0
2a) bounds?
3a) If not: burst 0 still in the
3a) output queue?
2b) Is burst 1 valid?
3b) If yes: request covered
3b) by current burst 1
3b) bounds?
4b) If not: burst 1 still in
4b) the output queue?
2c) Is burst 2 valid?
3c) If yes: request covered
3c) by current burst 2
3c) bounds?
4c) If not: burst 2 still in the
4c) output queue?
…

1 MSHR: 1 burst = 1–N memory requests
1 subentry: 1 incoming request

→ Large area and delay
overheads

Burst Invalidations

20

Memory space

MSHR

DDR
Memory

Output request queue
I

NQ

Burst updatable during
ேೂ

ேೂା ே೘೐೘
of its lifetime

1 MSHR: 1 burst = 1–N memory requests
1 subentry: 1 incoming request

Invalidated burst pending:
ignore first response

Capacities:
Queue: ≈ 1,000 – 10,000
Memory pipeline: ≈ 10 – 100

ேೂ

ேೂା ே೘೐೘
(see paper)

Nmem

Outline

• Nonblocking Caches and Miss-Optimized Memory System
• Top-Level Architecture
• Handling Bursts
• Experimental Setup
• Results
• Conclusion

21

Board: Xilinx ZC706

• XC7Z045 Zynq-7000 FPGA
• 1 GB of DDR3 on processing system (PS) side

• 3.9 GB/s through four 64-bit ports at 150 MHz

• 1 GB of DDR3 on programmable logic (PL) side
• 12.0 GB/s through one 512-bit port at 200 MHz

22

Accelerators: Compressed Sparse Row SpMV

• This work is not about optimized
SpMV!

• We aim for a generic architectural
solution

• Why SpMV?
• Representative of latency-tolerant,

bandwidth-bound applications with
various degrees of locality

• Important kernel in many
applications

• Several sparse graph algorithms
can be mapped to it

23
A. Ashari et al. “Fast Sparse Matrix-Vector Multiplication on GPUs for graph applications” SC 2014
J. Kepner and J. Gilbert “Graph Algorithms in the Language of Linear Algebra” SIAM 2011

• 15 benchmarks from SuiteSparse
• Include web, social, road

networks, and linear programming
• Single-precision floating point

values
• Vector size: 1.7–91 MB

(BRAM size: 2.39 MB)

https://sparse.tamu.edu/

PL and PS Systems
PL DDR

PS DDR

High bandwidth, single wide port

Low bandwidth, 4 narrow ports

PL system
- Same as in our

previous work
- 4 accelerators and

banks
- 200 MHz
PS system
- 8 accelerators and

banks
- 150 MHz

24
M. Asiatici and P. Ienne, “Stop Crying Over Your Cache Miss Rate: Handling Efficiently Thousands of Outstanding Misses in FPGAs” ISFPGA 2019

Design Space Exploration

• Baselines: other generic memory systems for irregular access pattern
• Our prior work (single-request)

• Each design point compared to same cache and miss handling configuration
• Traditional nonblocking cache with associative MSHRs

• 16 MSHRs + 8 subentries each, per bank
• Each design point compared to traditional cache with closest BRAM utilization

PL systems (4 banks) PS systems (8 banks)

Total cache size (KB) 0, 128, 256, 512, 1024 0, 64, 128, 256, 512

Maximum burst length 2, 4, 8, 16

Miss handling (6 subentries/row)

- Small 2k MSHR, 12k subentries 4k MSHR, 24k subentries

- Medium 6k MSHR, 48k subentries 8k MSHR, 48k subentries

- Large 16k MSHR, 96k subentries 16k MSHR, 96k subentries

25
M. Asiatici and P. Ienne, “Stop Crying Over Your Cache Miss Rate: Handling Efficiently Thousands of Outstanding Misses in FPGAs” ISFPGA 2019

Outline

• Nonblocking Caches and Miss-Optimized Memory System
• Top-Level Architecture
• Handling Bursts
• Experimental Setup
• Results
• Conclusion

26

Impact of Maximum Burst Length
and of Burst Trimming

27

Bursts much more useful
on PS system

We’ll now consider only best max burst lengths

Some benefit
on specific
design points
on PL system

Variable-length always
better than fixed-length

Short bursts: minimize
data wastage
Long bursts: maximize
reuse opportunities,
DDR burst, and DDR row
usage
Optimum is somewhere
in the middle

Cache and Miss Handling Size Exploration

28

Bursts required to make miss-optimized
memory systems cost-effective

Bursts further improve performance on
most of the design points

We’ll now look into these points

Speedup on Individual Benchmarks

29Most effective where traditional cache performance was lower

Up to 3.4x speedup at similar area cost
where caches are ineffective

Bursts further
improve most of
single-request
results

Resource Utilization

30

BRAM Slices

PS system 0 – 15 % 30 – 40 %

PL system 2 – 15 % 10 – 15 %

Overhead vs single-request

Conclusion

• Caches are not effective when read accesses are irregular and short
• Single-request miss-optimized memory systems

• Reuse same memory request among multiple incoming requests
• Useful only when memory controllers have wide ports

• DynaBurst
• Merges incoming requests into bursts of memory requests
• Controller with narrow ports: up to 3.4x speedup compared to cache with

similar area
• Controller with wide port: up to 2.4x speedup with < 15% area overhead

compared to prior work

31

Thank you!
https://github.com/m-asiatici/dynaburst

32

Backup

33

34

Memory bound → in > memoryFilling the Output Queue

MSHRs:
- Allocated on primary miss
- Deallocated on memory response
Memory response rate = memory request rate

35

Slope = primary - memory
Slope = in - memory

t

Filling the Output Queue

NMSHR

NQ
NMSHR,eq

NQ,eq = NMSHR,eq - NmemNmem

NMSHR,eq > NMSHR,max
- Stalls decrease incoming rate

until NMSHR,eq = NMSHR,max
- NQ,eq = NMSHR,max - Nmem

Probability that a burst can be updated:
𝑁ொ

𝑁ொ + 𝑁௠௘௠
=

𝑁ெௌுோ,௠௔௫ − 𝑁௠௘௠

𝑁ெௌுோ,௠௔௫
≈ 1

(𝑁ெௌுோ,௠௔௫ ≫ 𝑁௠௘௠)

NMSHR,eq < NMSHR,max
memory is not a bottleneck any more

Invalidations and Burst Usage

36

