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Introduction

Challenges in training of neural networks
— Large storage, memory bandwidth, energy consumption

— New DNN structures rapidly evolving and developed for diverse
applications

GPU’s are power hungry

ASIC not good for programmability, cannot predict future
DNNSs

FPGA’s are flexible

— Reconfigurable, scalable training hardware

— Can support low-precision or sparse matrix computations
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CNN Training Algorithm
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CNN Training Algorithm

Backward Pass

Error values are
propagated back in
the network

Flipped kernels are
used in convolutions

RelLU : gradients are
scaled by activation
gradients

Maxpool: Upsample
the image using
pooling indices
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CNN Training Algorithm

Weight Update

Weight gradients are
computed and
accumulated

Convolutions involve
Intra tile accumulations

New weights are
computed at the end of
batch

Learning rate (a) and
momentum ()
parameters are used
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Proposed RTL Compiler

CNN architecture Top level

Enssistaialill RTL Compiler for integrates
update, 1"Iatten, loss CNN Training > with tgraining

e Fixed point precision of H/W
each layer parameters modules

Configure hardware
e Generate parameters T

e Layer scheduling

based on CNN

Initialize memory

e Initial weight and bias 3 DRAMnit

e Training data, labels _ files
e Base addresses for RTL_ model "brarY
gradients, activations & * ngr_\ly paramgter|zed
weights flexible RTL files FPGA
supporting CNN l synthesis
: . training operations and
Loop unrolling and tiling gop mapping

factors

RTL compiler generates the training accelerator using high
level CNN description
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Overall Architecture
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Overall Architecture
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MAC Array
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Transposable Weight Buffers
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Results

CIFAR-10 1X: 2(16C3)-MP-2(32C3)-MP-2(64C3)-MP-FC

CIFAR-10 1X
CIFAR-10 2X
CIFAR-10 4X

Device
Batch size
CIFAR-10 1X

CIFAR-10 2X
CIFAR-10 4X

30% 19% 4.4%
58% 44% 9.5%
100% 76.2% 22.4%

Resource

DSP ALM BRAM

Latency per epoch (s)

BS-10 BS-20 BS-40

18.2 18 18.01
41.7 41.3 41
98.2 96.8 96.18

Throughput (GOPSs)

Titan XP  FPGA
1 40  (1/40)
456 551.8 163

128.8 1337.9 282
331.4 2353.7 479

Efficiency (GOPs/W)

Titan XP  FPGA
1 40  (1/40)
05 37 79
1.3 83 859
29 135 9.49

= Peak throughput
of 479 GOPs

= Better energy
efficiency than
GPU's for
smaller batch
sizes

= Limited by
DRAM B/W

* [Images in a
batch are
processed
sequentially
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Latency Breakdown

o 11%
b LLLLLLL LLLL] 89% ..... dsssssmnns fusssumnas E.}Q--- : 0
inpx/weight read — AC? .
o FP kit - Bl Logic latency
2 z DRAM later
o R . T 7N AR SR -DRAM Iater?cy |
Q. . : 5 ’ ' ' §
D BP | inpxiweight read : ? g g ;
£ s TR R R e
o ... gNpX/weight read 20%0, weight update ... ....... E E
= 7
WU MAC DRAM - weight gradients -

Latency (us)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

= Latency of CIFAR-10 4X CNN for one iteration of a batch
= Qverall ~20% logic latency and ~80% due to DRAM access

= Weight update phase is memory intense

— Contributes for ~51% of the overall latency
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Conclusion

Automatic RTL compiler-based CNN training

accelerator

Implemented parameterized RTL library to
support CNN training operations

Evaluated performance on
FPGA for three CNNSs for C

ntel Stratix-10 GX
FAR-10 dataset

Achieved 479 GOPs throug

Nput
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