Automatic Compiler Based FPGA Accelerator for CNN Training

<u>Shreyas Venkataramanaiah</u>¹, Yufei Ma¹, Shihui Yin¹, Eriko Nurvithadhi², Aravind Dasu³, Yu Cao¹, Jae-sun Seo¹

¹ School of ECEE, Arizona State University, Tempe, AZ, USA ² Intel Labs, Intel Corporation, OR, USA

³ Programmable Solutions Group, Intel Corporation, CA, USA

- Introduction
- CNN training algorithm
- RTL compiler
- CNN training accelerator
- Results
- Conclusion

Introduction

- Challenges in training of neural networks
 - Large storage, memory bandwidth, energy consumption
 - New DNN structures rapidly evolving and developed for diverse applications
- GPU's are power hungry
- ASIC not good for programmability, cannot predict future DNNs
- FPGA's are flexible
 - Reconfigurable, scalable training hardware
 - Can support low-precision or sparse matrix computations

Introduction

CNN training algorithm

- RTL compiler
- CNN training accelerator
- Results
- Conclusion

CNN Training Algorithm

Forward Pass

- Each training image is associated with a label
- Loss function estimates the network performance and provides error value
- ReLU: Store the activation gradients
- Maxpool: Store the selected pixel position

CNN Training Algorithm

Backward Pass

- Error values are propagated back in the network
- Flipped kernels are used in convolutions
- ReLU : gradients are scaled by activation gradients
- Maxpool: Upsample the image using pooling indices

CNN Training Algorithm

Weight Update

- Weight gradients are computed and accumulated
- Convolutions involve intra tile accumulations
- New weights are computed at the end of batch
- Learning rate (α) and momentum (β) parameters are used

- Introduction
- CNN training algorithm
- RTL compiler
- CNN training accelerator
- Results
- Conclusion

Proposed RTL Compiler

CNN architecture

- Layer details conv, pool, upsamp, scaling, weight update, flatten, loss
- Fixed point precision of each layer parameters
- Layer scheduling

Initialize memory

- Initial weight and bias
- Training data, labels
- Base addresses for gradients, activations & weights

Loop unrolling and tiling factors

RTL compiler generates the training accelerator using high level CNN description

- Introduction
- CNN training algorithm
- RTL compiler
- CNN training accelerator
- Results
- Conclusion

Overall Architecture

AG – Activation gradients, IDX – Maxpool Indices, UPSA – Upsampling

Overall Architecture

AG – Activation gradients, IDX – Maxpool Indices, UPSA – Upsampling

Overall Architecture

AG – Activation gradients, IDX – Maxpool Indices, UPSA – Upsampling

MAC Array

- Output stationary dataflow
- Data/weight re-use to minimize partial sum movement
- Reconfigurable MAC array to support all phases of training
- MAC array size is user determined – loop unroll factors (P_{of}, P_{ox}, P_{oy})

Transposable Weight Buffers

FP weight access pattern

	Out Feat. Maps (L+1)							
ss (L	101	102	103	104				
Map	201	202	203	204				
eat.	301	302	303	304				
Inp F	401	402	403	404				

BP weight access pattern

Inp Feat. Maps (L) Out Feat. Maps (L+1)

Transposable weight storage

	$\dot{\mathbf{c}}$		C1		Co			•					
Г	00								Training	Read address			
	101		102		103		104	N Indonondont	stage	\cap	C1	C_{2}	<u>(</u> 2
	204		201		202		203	independent		00		02	00
	202		204		201		202	Column	FP	0	0	0	0
	303		304		301		302	Dutters	BP	0	1	2	3
	402		403		404		401				4		abla
Block circulant matrix					lant	m	atrix	buffer during FP, BP, WU					

- Introduction
- CNN training algorithm
- RTL compiler
- CNN training accelerator
- Results

Conclusion

Results

CIFAR-10 1X: 2(16C3)-MP-2(32C3)-MP-2(64C3)-MP-FC

CNN		Resourd	e	Latency per epoch (s)			
	DSP	ALM	BRAM	BS-10	BS-20	BS-40	
CIFAR-10 1X	30%	19%	4.4%	18.2	18	18.01	
CIFAR-10 2X	58%	44%	9.5%	41.7	41.3	41	
CIFAR-10 4X	100%	76.2%	22.4%	98.2	96.8	96.18	

	Throu	ighput ((GOPs)	Efficiency (GOPs/W)			
Device	Titan XP		FPGA	Titan XP		FPGA	
Batch size	1	40	(1/40)	1	40	(1/40)	
CIFAR-10 1X	45.6	551.8	163	0.5	3.7	7.9	
CIFAR-10 2X	128.8	1337.9	282	1.3	8.3	8.59	
CIFAR-10 4X	331.4	2353.7	479	2.9	13.5	9.49	

 Peak throughput of 479 GOPs

- Better energy efficiency than GPU's for smaller batch sizes
- Limited by DRAM B/W
- Images in a batch are processed sequentially

Latency Breakdown

- Latency of CIFAR-10 4X CNN for one iteration of a batch
- Overall ~20% logic latency and ~80% due to DRAM access
- Weight update phase is memory intense
 - Contributes for ~51% of the overall latency

- Introduction
- CNN training algorithm
- RTL compiler
- CNN training accelerator
- Results
- Conclusion

Conclusion

- Automatic RTL compiler-based CNN training accelerator
- Implemented parameterized RTL library to support CNN training operations
- Evaluated performance on Intel Stratix-10 GX FPGA for three CNNs for CIFAR-10 dataset
- Achieved 479 GOPs throughput

Acknowledgements

We thank **Intel Corporation** for supporting and funding this research work. This work was also partially supported by **NSF grant** 1652866 and **C-BRIC**, one of six centers in JUMP, an SRC program sponsored by DARPA

