Automatic Compiler Based
FPGA Accelerator for
CNN Training

Shreyas Venkataramanaiah?, Yufei Mal,
Shihui Yint, Eriko Nurvithadhi?, Aravind Dasus,
Yu Caol, Jae-sun Seol

1 School of ECEE, Arizona State University, Tempe, AZ, USA
2 Intel Labs, Intel Corporation, OR, USA

3 Programmable Solutions Group, Intel Corporation, CA, USA

Outline

= |ntroduction

Introduction

Challenges in training of neural networks
— Large storage, memory bandwidth, energy consumption

— New DNN structures rapidly evolving and developed for diverse
applications

GPU’s are power hungry

ASIC not good for programmability, cannot predict future
DNNSs

FPGA’s are flexible

— Reconfigurable, scalable training hardware

— Can support low-precision or sparse matrix computations

Outline

CNN training algorithm

CNN Training Algorithm

FO rW ar d PaS S local weight weight

_Input gradients gradients update
image |«

~

Each training image Is _ ~
g g uCon})/ Sso wh a, B
7%

associated with a label | == (hew w°
_ _ ‘ﬁ Conv ’;,

Loss function estimates l -->'

the network performance i_gzol M upsamp

I 1
and provides error value “‘ w ,a,_/3_>

ReLU: Store the activation ~ feopy ~=~II_ 59" A
radients s
: T G
Maxpool: Store the Broot Mooy 2o
selected pixel position I% I% -->
Tl A
w FC wZld FE=~
:._> Loss [|=! Error

CNN Training Algorithm

Backward Pass

Error values are
propagated back in
the network

Flipped kernels are
used in convolutions

RelLU : gradients are
scaled by activation
gradients

Maxpool: Upsample
the image using
pooling indices

Inout local weight weight
hpd gradients gradients update
image S
nConv *\ w a, B
w . == (new w?
DX Conv
| -->Car D77
aPooI ﬂUpsamp
—
wla,p
SSS Conv
Qoop ™~ W70 5
~o Conv ’
%-->
aPooI ﬂUpsamp

Vector ;7
mult y

=1 Error

CNN Training Algorithm

Weight Update

Weight gradients are
computed and
accumulated

Convolutions involve
Intra tile accumulations

New weights are
computed at the end of
batch

Learning rate (a) and
momentum ()
parameters are used

Inout local weight weight
‘hpu gradients gradients update
iImage \\
~
—_— ~
U,Conv S wl a, B
\\A Conv
>Car D=7
UrPooI ﬂUpsamp
—_—
wla, B
S
~ Conv 71
C S~ 1
a onv ~ Wiy ,,

-~
-y
~~

FC™~
%-- Gy

ﬁU psamp

w2, a,

Vector 1
mult

Loss

1 Error

Outline

RTL compiler

Proposed RTL Compiler

CNN architecture Top level

Enssistaialill RTL Compiler for integrates
update, 1"Iatten, loss CNN Training > with tgraining

e Fixed point precision of H/W
each layer parameters modules

Configure hardware
e Generate parameters T

e Layer scheduling

based on CNN

Initialize memory

e Initial weight and bias 3 DRAMnit

e Training data, labels _ files
e Base addresses for RTL_ model "brarY
gradients, activations & * ngr_\ly paramgter|zed
weights flexible RTL files FPGA
supporting CNN l synthesis
: . training operations and
Loop unrolling and tiling gop mapping

factors

RTL compiler generates the training accelerator using high
level CNN description

o BSU

Outline

CNN training accelerator

Overall Architecture

Output buffer —

. . Pixel data bus
Weight gradient

Transposable
P buffers/accumulator —

weight buffer [€= WU

Weight data bus
RelU, AG DX Old weight buffer g —>
scale loss buffer buffer = Index/AG bus
S —
PE Array UPSA Pooling S Control
Conv/FC (Demux/mult) Unit S ontro
control 1« g
A Data router o .
Welght A Computing
Data buffer modules
. l—) Input buffer
1 Data scatter
DMA «—> DMA Manager < > On-chip
buffers

AG — Activation gradients, IDX — Maxpool Indices, UPSA — Upsampling
£SU

Overall Architecture

Output buffer

Transposable
weight buffer

Weight gradient
buffers/accumulator

Old weight

AG
buffer

IDX
buffer

buffer

Weight
buffer

Input buffer

On-chip
buffers

AG — Activation gradients, IDX — Maxpool Indices, UPSA — Upsampling

Overall Architecture

Output buffer
=T J Pixel data bus
Transposable Weight gradient
weight buffer [€=l WU buffers/accumulator -
Weight data bus
Rel U, Old weight buffer -—

scale, loss

1

Index/AG bus

‘ AG H IDX
© buffer buffer

—

2160| |0.13u0D [eqO|D

PE Array UPSA Pooling Control
Conv/FC (Demux/mult) Unit S
control (-I_H
1_ Data router | _
Weight Z Computing
buffer l_) Input buffer modules
Data scatter
DMA « > DMA Manager |< > On-chip
buffers

AG — Activation gradients, IDX — Maxpool Indices, UPSA — Upsampling

MAC Array

<
A
MAC |« | MAC || MAC | MAC |« -
- O
MAC |« | MAC [« | MAC | MAC |« |l gf
qa | v 450 Cg
Q. o © 03)
MAC i'- MAC Jd| MAC | MAC |« = =
(@)
t 1 1 1 = 5
= S
MAC |4 | MAC |4 | MAC | MAC |« | 22
v © S
1 T 1 1 © 2
—
Pad, stride
kernel size Data router T
¢ Training
Inpx data . phase
-
Erom DRAM Input pixel buffer

Tralnlng Phase(lnput px buffer| Weight buffer | Output buffer

Normal kernels

BP
WU

Activations

Activations

Activations

Local gradients Flipped kernels Local gradients
Local gradients Kernel gradients

Output stationary
dataflow

Data/weight re-use
to minimize partial
sum movement

Reconfigurable MAC
array to support all
phases of training

MAC array size Is
user determined —
loop unroll factors

(Pofrpox: Poy)

Transposable Weight Buffers

FP weight access pattern BP weight access pattern
__ Out Feat. Maps (L+1) . Inp Feat. Maps (L)
—
‘;," 101 | 102 | 103 | 104) car N e | o
o
£ | 201 202 | 203 | 204 Transpose S 102 | 202 | 302 | 202
- =
@‘E 301 | 302 | 303 | 304 ‘ § —
£ |401] 402 [403 e = | 104|204 | 304 404
o)
Transposable weight storage

CO Cl C2 C3\

. Training Read address
101 | |102| |103| |104 stage

Independent 9 CoO C1 Cz2 C3
204 | |201| |202| |203 column = T o o &
303| [304| |301]| |302 buffers

BP o 1 2 3

: : Read controls to transposable
Block circulant matrix buffer during FP, BP, WU

£SU

402 403 404 401

Outline

Results

16

Results

CIFAR-10 1X: 2(16C3)-MP-2(32C3)-MP-2(64C3)-MP-FC

CIFAR-10 1X
CIFAR-10 2X
CIFAR-10 4X

Device
Batch size
CIFAR-10 1X

CIFAR-10 2X
CIFAR-10 4X

30% 19% 4.4%
58% 44% 9.5%
100% 76.2% 22.4%

Resource

DSP ALM BRAM

Latency per epoch (s)

BS-10 BS-20 BS-40

18.2 18 18.01
41.7 41.3 41
98.2 96.8 96.18

Throughput (GOPSs)

Titan XP FPGA
1 40 (1/40)
456 551.8 163

128.8 1337.9 282
331.4 2353.7 479

Efficiency (GOPs/W)

Titan XP FPGA
1 40 (1/40)
05 37 79
1.3 83 859
29 135 9.49

= Peak throughput
of 479 GOPs

= Better energy
efficiency than
GPU's for
smaller batch
sizes

= Limited by
DRAM B/W

* [Images in a
batch are
processed
sequentially

o)

Latency Breakdown

o 11%
b LLLLLLL LLLL] 89% dsssssmnns fusssumnas E.}Q--- : 0
inpx/weight read — AC? .
o FP kit - Bl Logic latency
2 z DRAM later
o R . T 7N AR SR -DRAM Iater?cy |
Q. . : 5 ’ ' ' §
D BP | inpxiweight read : ? g g ;
£ s TR R R e
o ... gNpX/weight read 20%0, weight update E E
= 7
WU MAC DRAM - weight gradients -

Latency (us)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

= Latency of CIFAR-10 4X CNN for one iteration of a batch
= Qverall ~20% logic latency and ~80% due to DRAM access

= Weight update phase is memory intense

— Contributes for ~51% of the overall latency

18 PsU

Outline

Conclusion

19

Conclusion

Automatic RTL compiler-based CNN training

accelerator

Implemented parameterized RTL library to
support CNN training operations

Evaluated performance on
FPGA for three CNNSs for C

ntel Stratix-10 GX
FAR-10 dataset

Achieved 479 GOPs throug

Nput

Acknowledgements

BN JUMP @-BRIiC

C-BRIC (Center for BRain-Inspired Computing)

We thank Intel Corporation for supporting and funding this
research work. This work was also partially supported by
NSF grant 1652866 and C-BRIC, one of six centers in

JUMP, an SRC program sponsored by DARPA

