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Introduction

▪ Challenges in training of neural networks 

‒ Large storage, memory bandwidth, energy consumption

‒ New DNN structures rapidly evolving and developed for diverse 

applications

▪ GPU’s are power hungry 

▪ ASIC not good for programmability, cannot predict future 

DNNs 

▪ FPGA’s are flexible

‒ Reconfigurable, scalable training hardware

‒ Can support low-precision or sparse matrix computations
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CNN Training Algorithm 

Forward Pass

▪ Each training image is 

associated with a label

▪ Loss function estimates 

the network performance 

and provides error value

▪ ReLU: Store the activation 

gradients 

▪ Maxpool: Store the 

selected pixel position
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CNN Training Algorithm

Backward Pass

▪ Error values are 
propagated back in 
the network

▪ Flipped kernels are 
used in convolutions

▪ ReLU : gradients are 
scaled by activation 
gradients

▪ Maxpool: Upsample
the image using 
pooling indices
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CNN Training Algorithm

Weight Update

▪ Weight gradients are 

computed and 

accumulated

▪ Convolutions involve 

intra tile accumulations

▪ New weights are 

computed at the end of 

batch

▪ Learning rate (𝛼) and 

momentum (𝛽)
parameters are used 1x10
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Proposed RTL Compiler 

Loop unrolling and tiling 

factors

CNN architecture
• Layer details – conv, pool, 

upsamp, scaling, weight 

update, flatten, loss

• Fixed point precision of 

each layer parameters

• Layer scheduling 

Initialize memory
• Initial weight and bias 

• Training data, labels

• Base addresses for 

gradients, activations & 

weights 

RTL model library
• Highly parameterized 

flexible RTL files 

supporting CNN 

training operations

Configure hardware
• Generate parameters 

based on CNN 

Top level 

RTL 

integrated 

with training 

H/W 

modules

DRAM init 

files

RTL Compiler for 

CNN Training

FPGA 

synthesis 

and 

mapping
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RTL compiler generates the training accelerator using high

level CNN description



Outline 

▪ Introduction

▪ CNN training algorithm

▪ RTL compiler

▪ CNN training accelerator

▪ Results

▪ Conclusion

10



Overall Architecture
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MAC Array

Training Phase Input px buffer Weight buffer Output buffer

FP Activations Normal kernels Activations

BP Local gradients Flipped kernels Local gradients

WU Activations Local gradients Kernel gradients
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▪ Output stationary 

dataflow

▪ Data/weight re-use 

to minimize partial 

sum movement

▪ Reconfigurable MAC 

array to support all 

phases of training

▪ MAC array size is 

user determined –

loop unroll factors 

(𝑃𝑜𝑓, 𝑃𝑜𝑥 , 𝑃𝑜𝑦)



Transposable Weight Buffers
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Results
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CNN Resource Latency per epoch (s)

DSP ALM BRAM BS-10 BS-20 BS-40

CIFAR-10 1X 30% 19% 4.4% 18.2 18 18.01

CIFAR-10 2X 58% 44% 9.5% 41.7 41.3 41

CIFAR-10 4X 100% 76.2% 22.4% 98.2 96.8 96.18

Throughput (GOPs) Efficiency (GOPs/W)

Device Titan XP FPGA Titan XP FPGA

Batch size 1 40 (1/40) 1 40 (1/40)

CIFAR-10 1X 45.6 551.8 163 0.5 3.7 7.9

CIFAR-10 2X 128.8 1337.9 282 1.3 8.3 8.59

CIFAR-10 4X 331.4 2353.7 479 2.9 13.5 9.49

▪ Peak throughput 

of 479 GOPs

▪ Better energy 

efficiency than 

GPU’s for 

smaller batch 

sizes

▪ Limited by 

DRAM B/W

▪ Images in a 

batch are 

processed 

sequentially

CIFAR-10 1X: 2(16C3)-MP-2(32C3)-MP-2(64C3)-MP-FC
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Latency Breakdown

▪ Latency of CIFAR-10 4X CNN for one iteration of a batch

▪ Overall ~20% logic latency and ~80% due to DRAM access

▪ Weight update phase is memory intense

‒ Contributes for ~51% of the overall latency

89%

12%88%

11%

29% 71%

Logic latency

DRAM latency
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Conclusion

▪ Automatic RTL compiler-based CNN training 

accelerator

▪ Implemented parameterized RTL library to 

support CNN training operations

▪ Evaluated performance on Intel Stratix-10 GX 

FPGA for three CNNs for CIFAR-10 dataset

▪ Achieved 479 GOPs throughput
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