
Automatic Compiler Based

FPGA Accelerator for

CNN Training

Shreyas Venkataramanaiah1, Yufei Ma1 ,

Shihui Yin1, Eriko Nurvithadhi2, Aravind Dasu3,

Yu Cao1, Jae-sun Seo1

1 School of ECEE, Arizona State University, Tempe, AZ, USA
2 Intel Labs, Intel Corporation, OR, USA

3 Programmable Solutions Group, Intel Corporation, CA, USA

Outline

▪ Introduction

▪ CNN training algorithm

▪ RTL compiler

▪ CNN training accelerator

▪ Results

▪ Conclusion

2

Introduction

▪ Challenges in training of neural networks

‒ Large storage, memory bandwidth, energy consumption

‒ New DNN structures rapidly evolving and developed for diverse

applications

▪ GPU’s are power hungry

▪ ASIC not good for programmability, cannot predict future

DNNs

▪ FPGA’s are flexible

‒ Reconfigurable, scalable training hardware

‒ Can support low-precision or sparse matrix computations

3

Outline

▪ Introduction

▪ CNN training algorithm

▪ RTL compiler

▪ CNN training accelerator

▪ Results

▪ Conclusion

4

CNN Training Algorithm

Forward Pass

▪ Each training image is

associated with a label

▪ Loss function estimates

the network performance

and provides error value

▪ ReLU: Store the activation

gradients

▪ Maxpool: Store the

selected pixel position

1x10

Input

image

local

gradients

weight

gradients

Loss

weight

update

Conv

Pool

Conv

Pool

FC

𝒘𝟎

𝒘𝟏

𝒘𝟐

Δ𝑤0

Δ𝑤2

Δ𝑤1

Conv

Conv

Vector

mult

𝑤0, 𝛼, 𝛽

𝑤1, 𝛼, 𝛽

𝑤2, 𝛼, 𝛽

𝑤0new

new

new

𝑤1

𝑤2

Error

1x10

Conv

Upsamp

FC

Upsamp

𝑤𝑓𝑙𝑖𝑝
1

𝑤𝑇
2

CNN Training Algorithm

Backward Pass

▪ Error values are
propagated back in
the network

▪ Flipped kernels are
used in convolutions

▪ ReLU : gradients are
scaled by activation
gradients

▪ Maxpool: Upsample
the image using
pooling indices

1x10

Input

image

local

gradients

weight

gradients

Loss

weight

update

Conv

Pool

Conv

Pool

FC

𝑤0

𝑤1

𝑤2

Δ𝑤0

Δ𝑤2

Δ𝑤1

Conv

Conv

Vector

mult

𝑤0, 𝛼, 𝛽

𝑤1, 𝛼, 𝛽

𝑤2, 𝛼, 𝛽

𝑤0new

new

new

𝑤1

𝑤2

Error

1x10

Conv

Upsamp

FC

Upsamp

𝒘𝒇𝒍𝒊𝒑
𝟏

𝒘𝑻
𝟐

CNN Training Algorithm

Weight Update

▪ Weight gradients are

computed and

accumulated

▪ Convolutions involve

intra tile accumulations

▪ New weights are

computed at the end of

batch

▪ Learning rate (𝛼) and

momentum (𝛽)
parameters are used 1x10

Input

image

local

gradients

weight

gradients

Loss

weight

update

Conv

Pool

Conv

Pool

FC

𝑤0

𝑤1

𝑤2

𝚫𝒘𝟎

𝚫𝒘𝟐

𝚫𝒘𝟏

Conv

Conv

Vector

mult

𝒘𝟎, 𝜶, 𝜷

𝒘𝟏, 𝜶, 𝜷

𝒘𝟐, 𝜶, 𝜷

𝒘𝟎new

new

new

𝒘𝟏

𝒘𝟐

Error

1x10

Conv

Upsamp

FC

Upsamp

𝑤𝑓𝑙𝑖𝑝
1

𝑤𝑇
2

Outline

▪ Introduction

▪ CNN training algorithm

▪ RTL compiler

▪ CNN training accelerator

▪ Results

▪ Conclusion

8

Proposed RTL Compiler

Loop unrolling and tiling

factors

CNN architecture
• Layer details – conv, pool,

upsamp, scaling, weight

update, flatten, loss

• Fixed point precision of

each layer parameters

• Layer scheduling

Initialize memory
• Initial weight and bias

• Training data, labels

• Base addresses for

gradients, activations &

weights

RTL model library
• Highly parameterized

flexible RTL files

supporting CNN

training operations

Configure hardware
• Generate parameters

based on CNN

Top level

RTL

integrated

with training

H/W

modules

DRAM init

files

RTL Compiler for

CNN Training

FPGA

synthesis

and

mapping

9

RTL compiler generates the training accelerator using high

level CNN description

Outline

▪ Introduction

▪ CNN training algorithm

▪ RTL compiler

▪ CNN training accelerator

▪ Results

▪ Conclusion

10

Overall Architecture

ReLU,

scale, loss

Output buffer

PE Array

Conv/FC

control

G
lo

b
a

l C
o

n
tro

l lo
g
ic

Data

Gather

Data scatter

Pooling

Unit
UPSA

(Demux/mult)

Weight

buffer Input buffer

Data router

AG

buffer

Weight gradient

buffers/accumulator

Old weight buffer

Transposable

weight buffer

IDX

buffer

DMA DMA Manager

WU

Pixel data bus

Weight data bus

Index/AG bus

Control

Computing

modules

On-chip

buffers

AG – Activation gradients, IDX – Maxpool Indices, UPSA – Upsampling

Overall Architecture

ReLU,

scale, loss

Output buffer

PE Array

Conv/FC

control

G
lo

b
a

l C
o

n
tro

l lo
g
ic

Data

Gather

Data scatter

Pooling

Unit
UPSA

(Demux/mult)

Weight

buffer Input buffer

Data router

AG

buffer

Weight gradient

buffers/accumulator

Old weight

buffer

Transposable

weight buffer

IDX

buffer

DMA DMA Manager

WU

Pixel data bus

Weight data bus

Index/AG bus

Control

Computing

modules

On-chip

buffers

AG – Activation gradients, IDX – Maxpool Indices, UPSA – Upsampling

Overall Architecture

ReLU,

scale, loss

Output buffer

PE Array

Conv/FC

control

G
lo

b
a

l C
o

n
tro

l lo
g
ic

Data

Gather

Data scatter

Pooling

Unit
UPSA

(Demux/mult)

Weight

buffer Input buffer

Data router

AG

buffer

Weight gradient

buffers/accumulator

Old weight buffer

Transposable

weight buffer

IDX

buffer

DMA DMA Manager

WU

Pixel data bus

Weight data bus

Index/AG bus

Control

Computing

modules

On-chip

buffers

AG – Activation gradients, IDX – Maxpool Indices, UPSA – Upsampling

MAC Array

Training Phase Input px buffer Weight buffer Output buffer

FP Activations Normal kernels Activations

BP Local gradients Flipped kernels Local gradients

WU Activations Local gradients Kernel gradients

MAC MAC MAC MAC

MAC MAC MAC MAC

MAC MAC MAC MAC

MAC MAC MAC MAC

Data router

W
e

ig
h

t
ro

u
te

r

Input pixel buffer

Pox

P
o

f

Pad, stride

kernel size

Inpx data

From DRAM

Training

phase

L
o

c
a

l
g

ra
d

b
u

ff
e

r

T
ra

n
s

p
o

s
a

b
le

w
e
ig

h
t

b
u

ff
e

r

▪ Output stationary

dataflow

▪ Data/weight re-use

to minimize partial

sum movement

▪ Reconfigurable MAC

array to support all

phases of training

▪ MAC array size is

user determined –

loop unroll factors

(𝑃𝑜𝑓, 𝑃𝑜𝑥 , 𝑃𝑜𝑦)

Transposable Weight Buffers

15

101 102 103 104

201 202 203 204

301 302 303 304

401 402 403 404

In
p

F
e

a
t.

 M
a
p

s
 (

L
)

Out Feat. Maps (L+1)

101 102 103 104

201 202 203204

301 302303 304

401402 403 404

Training

stage

Read address

C0 C1 C2 C3

FP 0 0 0 0

BP 0 1 2 3

C0 C1 C2 C3

FP weight access pattern

101 201 301 401

102 202 302 402

103 203 303 403

104 204 304 404

Inp Feat. Maps (L)

O
u

t
F

e
a
t.

 M
a
p

s
 (

L
+

1
)

BP weight access pattern

Read controls to transposable

buffer during FP, BP, WU

Transpose

Block circulant matrix

Independent

column

buffers

Transposable weight storage

Outline

▪ Introduction

▪ CNN training algorithm

▪ RTL compiler

▪ CNN training accelerator

▪ Results

▪ Conclusion

16

Results

17

CNN Resource Latency per epoch (s)

DSP ALM BRAM BS-10 BS-20 BS-40

CIFAR-10 1X 30% 19% 4.4% 18.2 18 18.01

CIFAR-10 2X 58% 44% 9.5% 41.7 41.3 41

CIFAR-10 4X 100% 76.2% 22.4% 98.2 96.8 96.18

Throughput (GOPs) Efficiency (GOPs/W)

Device Titan XP FPGA Titan XP FPGA

Batch size 1 40 (1/40) 1 40 (1/40)

CIFAR-10 1X 45.6 551.8 163 0.5 3.7 7.9

CIFAR-10 2X 128.8 1337.9 282 1.3 8.3 8.59

CIFAR-10 4X 331.4 2353.7 479 2.9 13.5 9.49

▪ Peak throughput

of 479 GOPs

▪ Better energy

efficiency than

GPU’s for

smaller batch

sizes

▪ Limited by

DRAM B/W

▪ Images in a

batch are

processed

sequentially

CIFAR-10 1X: 2(16C3)-MP-2(32C3)-MP-2(64C3)-MP-FC

18

Latency Breakdown

▪ Latency of CIFAR-10 4X CNN for one iteration of a batch

▪ Overall ~20% logic latency and ~80% due to DRAM access

▪ Weight update phase is memory intense

‒ Contributes for ~51% of the overall latency

89%

12%88%

11%

29% 71%

Logic latency

DRAM latency

Outline

▪ Introduction

▪ CNN training algorithm

▪ RTL compiler

▪ CNN training accelerator

▪ Results

▪ Conclusion

19

Conclusion

▪ Automatic RTL compiler-based CNN training

accelerator

▪ Implemented parameterized RTL library to

support CNN training operations

▪ Evaluated performance on Intel Stratix-10 GX

FPGA for three CNNs for CIFAR-10 dataset

▪ Achieved 479 GOPs throughput

20

Acknowledgements

C-BRIC (Center for BRain-Inspired Computing)

We thank Intel Corporation for supporting and funding this

research work. This work was also partially supported by

NSF grant 1652866 and C-BRIC, one of six centers in

JUMP, an SRC program sponsored by DARPA

