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Introduction
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• Challenges in CNN inferencing on FPGAs:

• Computation complexity: sliding window operations

• Design effort: design space search & manual hardware implementation

• Design optimization: resource utilization & clock rate for large scale designs

• Design flexibility: various CNN models and FPGAs and 

performance requirements

• Need fast generation of:

• Performance meta-data to tune CNN models

• Hardware code to deploy inference pipeline
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Background & Motivation: 
Spectral CNN on FPGAs
• Convolutional Neural Networks (CNN)

• Spectral convolution [1]
• Sliding window operation  Hadamard product
•
• Partitioning on and padding on Overlap-and-Add

• Why spectral CNNs?
• Computation reduction: for AlexNet, VGG16,….

• ℱ: Fourier transform
• ℱ : Inverse Fourier transform
• 𝐼∗: image
• 𝐾 : conv. kernels after FFT

[1]: Zeng, Chen, Zhang, Prasanna, A framework for generating high throughput CNN implementations on 
FPGAs, Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays 



Problem is Non-trivial
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• Goal: Fast and flexible design space exploration and generation of Verilog 
for high throughput inference

• Constraints: Limited BRAM and DSP resources

• Need to explore a huge design space quickly

• Optimization needed in spectral convolution engine to support large FPGA 
devices



Tool Overview (1)
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• Automated tool for generating quantized spectral CNN accelerators 
in synthesizable Verilog

• Performance metrics
• Time to generate design
• Throughput of generated design

• Flexibility
• Quantization schemes

• Various bit widths for kernels and activations
• FPGA architecture

• Various resources (DSPs, BRAMs, bandwidth, etc.)
• CNN models

• Various model parameters (channels, kernel sizes, image sizes, etc.)



Tool Overview (2)
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Proposed Tool

CNN model

FPGA specification

Quantization 
scheme

Input image size,
For each layer:
• Activation size
• Kernel size
• Channel size

For each layer:
• Kernel bit-width
• Activation bit-width DSP, BRAM, 

bandwidth, 
latency

Data layout

Throughput-
optimized 
accelerator

Meta-data

Estimated resource 
breakdown,
Estimated throughput,
Bottlenecks

Verilog code

Data tiles in 
external 
memory



Tool Overview (3)

Algorithmic 
Optimization

Architectural 
Optimization

Design Space 
Exploration

Design 
Generation
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CNN 
model
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scheme
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Overlap-and-Add
Concatenate-and-Pad

Spectral loop tiling

Minimize 

where

Subject to

Optimization problem formulation

Architecture template



Architecture Template
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• Design parameters: FFT size, FFT parallelism, batch size, systolic 
array size, systolic array parallelism and number of channels

• Architecture template for Verilog generation:



Optimization 1: Variable Bit-width Multiplier
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• Requirement Unique to spectral CNN: low bit-width complex multiplication

• Challenge: DSPs accept fixed, high bit-width inputs

• Idea: Pad the data of low bit width to match the DSP input width

Performance estimation on Stratix 10Example: 



Optimization 2:
Switching Parallelization Dimensions (1)
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• Challenge: Concurrent memory accesses for Hadamard product

• Example:
• operations ( = FFT size)
• distinct 

BRAM accesses
• Thousands of BRAM accesses

per cycle to support parallelism
of thousands of DSPs

• Severe clock rate degradation due to the pressure on BRAMs



Optimization 2: 
Switching Parallelization Dimensions (2)
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• Parallelize along  width & height 
dimensions  Hadamard products

• Parallelize along batch & channel 
dimensions Matrix dot products

• Systolic array: blocked matrix multiplication

• Analysis
• BRAM accesses/cycle  for DSP operations

• Efficient for FPGAs with large number of DSPs



Optimization 3: Design Space Exploration
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• Challenge:
• Large Design space: 

• 4 HW parameters: Parallelism of modules
• 3 SW parameters: Data layout & tiling

• Optimization goal:
• Inference throughput (batch processing)
 Identify bottleneck stage in the pipeline

• Optimization Problem/Constraints: (see paper)
1. SW-HW coordination Tiling matches (device) parallelism
2. Limited resources Share DSP: FFT / Sys-array / IFFT

Share BRAM: input / kernel / output buffers
Share bandwidth: input / output activation

3. Load-balance Keep the pipeline always busy

• Optimization Technique: Hierarchical priority parameter sweep



Experimental Setup
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• Target FPGA devices Stratix-10 GX, Stratix-V GX

• Bit widths 2- to 16-bit

• CNNs AlexNet, VGG16

• Tool execution Intel Core-i5 CPU

Design space exploration + generation 



Comparison with State-of-the-art Designs (1)
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• Comparison with state-of-the-art spectral CNN tool (FPGA ’18)

AlexNet VGG16

FPGA ’18 * Proposed FPGA ’18 * Proposed

FPGA Stratix-10
GX2800

Stratix-10
GX2800

Stratix-10
GX2800

Stratix-10
GX2800

Clock (MHz) 120 200 120 200

Quantization 16-bit 16-bit 16-bit 16-bit

DSP 3264 (56%) 3264 (56%) 3264 (56%) 3264 (56%)

Logic 413K (45%) 140K (15%) 419K (47%) 140K (15%) 

BRAM 6129 (52%) 1616 (22%) 6133 (32%) 2616 (22%)

Throughput
(img/sec) 1704 2841 77 129

*: Original design on Strativ-V; Re-implemented on Stratix-10

Switching 
parallelization 
dimensions 
improves clock 
rate

Optimized 
architectural 
template 
reduces logic



Comparison with State-of-the-art Designs (3)
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• Comparison with state-of-the-art spatial CNN tool (ICCAD ’18)

16-bit
AlexNet VGG16

ICCAD ’18 Proposed ICCAD ’18 Proposed

FPGA UltraScale
KU115

Stratix-10
GX2800

UltraScale
KU115

Stratix-10
GX2800

Clock (MHz) 220 200 235 200

Quantization 16-bit 16-bit 16-bit 16-bit

DSP 4854 (88%) 3264 (56%) 4318 (78%) 3264 (56%)

Logic 262K (40%) 140K (15%) 258K (39%) 140K (15%) 

BRAM 986 (46%) 1616 (22%) 1578 (81%) 2616 (22%)

Throughput
(img/sec) 1126 2841 65 129



Comparison with State-of-the-art Designs (3)
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• Comparison with state-of-the-art spatial CNN tool (ICCAD ’18)

8-bit
AlexNet VGG16

ICCAD ’18 Proposed ICCAD ’18 Proposed

FPGA UltraScale
KU115

Stratix-10
GX2800

UltraScale
KU115

Stratix-10
GX2800

Clock (MHz) 220 200 235 200

Quantization 8-bit 8-bit 8-bit 8-bit

DSP 4854 (88%) 4480 (78%) 4318 (78%) 4480 (78%)

Logic 262K (40%) 150K (16%) 258K (39%) 150K (16%)

BRAM 986 (46%) 5232 (45%) 1578 (81%) 5232 (45%) 

Throughput
(img/sec) 2252 9114 130 308

Throughput improvement due to
• Spectral convolution algorithm
• Optimized design generation process



Evaluation on Flexibility (1)
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• Flexibility w.r.t. CNN models

Layer index



Evaluation on Flexibility (2)
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• Flexibility w.r.t. FPGA resources

Fraction of DSPs available Fraction of BRAMs available



Flexible Tool for Automatic Generation of Pruned 
and Quantized Spectral CNNs: The Big Picture 
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Conclusion
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• Design automation tool for generating high throughput spectral CNN 

accelerator

• Flexibility:

• CNN models

• Quantization schemes

• FPGA devices

• Significantly higher throughput ( ) than designed by state-of-the-art tools

• Spatial or Spectral?? 

• Implications: Multi-core, GPU platforms??



Thank you!

https://fpga.usc.edu/
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