
A Flexible Design Automation Tool
for Accelerating

Quantized Spectral CNNs

Rachit Rajat, Hanqing Zeng, Viktor Prasanna

University of Southern California

fpga.usc.edu

1

FPL 2019, Barcelona

Outline

2

• Introduction

• Background

• Tool overview

• Architecture template

• Optimizations

• Experiments

• Conclusion

Introduction

3

• Challenges in CNN inferencing on FPGAs:

• Computation complexity: sliding window operations

• Design effort: design space search & manual hardware implementation

• Design optimization: resource utilization & clock rate for large scale designs

• Design flexibility: various CNN models and FPGAs and

performance requirements

• Need fast generation of:

• Performance meta-data to tune CNN models

• Hardware code to deploy inference pipeline

4

Background & Motivation:
Spectral CNN on FPGAs
• Convolutional Neural Networks (CNN)

• Spectral convolution [1]
• Sliding window operation Hadamard product
•
• Partitioning on and padding on Overlap-and-Add

• Why spectral CNNs?
• Computation reduction: for AlexNet, VGG16,….

• ℱ: Fourier transform
• ℱ : Inverse Fourier transform
• 𝐼∗: image
• 𝐾 : conv. kernels after FFT

[1]: Zeng, Chen, Zhang, Prasanna, A framework for generating high throughput CNN implementations on
FPGAs, Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays

Problem is Non-trivial

5

• Goal: Fast and flexible design space exploration and generation of Verilog
for high throughput inference

• Constraints: Limited BRAM and DSP resources

• Need to explore a huge design space quickly

• Optimization needed in spectral convolution engine to support large FPGA
devices

Tool Overview (1)

6

• Automated tool for generating quantized spectral CNN accelerators
in synthesizable Verilog

• Performance metrics
• Time to generate design
• Throughput of generated design

• Flexibility
• Quantization schemes

• Various bit widths for kernels and activations
• FPGA architecture

• Various resources (DSPs, BRAMs, bandwidth, etc.)
• CNN models

• Various model parameters (channels, kernel sizes, image sizes, etc.)

Tool Overview (2)

7

Proposed Tool

CNN model

FPGA specification

Quantization
scheme

Input image size,
For each layer:
• Activation size
• Kernel size
• Channel size

For each layer:
• Kernel bit-width
• Activation bit-width DSP, BRAM,

bandwidth,
latency

Data layout

Throughput-
optimized
accelerator

Meta-data

Estimated resource
breakdown,
Estimated throughput,
Bottlenecks

Verilog code

Data tiles in
external
memory

Tool Overview (3)

Algorithmic
Optimization

Architectural
Optimization

Design Space
Exploration

Design
Generation

Meta-data Accelerator Data-layout

FPGA
spec.

CNN
model

Quan.
scheme

8

Overlap-and-Add
Concatenate-and-Pad

Spectral loop tiling

Minimize

where

Subject to

Optimization problem formulation

Architecture template

Architecture Template

9

• Design parameters: FFT size, FFT parallelism, batch size, systolic
array size, systolic array parallelism and number of channels

• Architecture template for Verilog generation:

Optimization 1: Variable Bit-width Multiplier

10

• Requirement Unique to spectral CNN: low bit-width complex multiplication

• Challenge: DSPs accept fixed, high bit-width inputs

• Idea: Pad the data of low bit width to match the DSP input width

Performance estimation on Stratix 10Example:

Optimization 2:
Switching Parallelization Dimensions (1)

11

• Challenge: Concurrent memory accesses for Hadamard product

• Example:
• operations (= FFT size)
• distinct

BRAM accesses
• Thousands of BRAM accesses

per cycle to support parallelism
of thousands of DSPs

• Severe clock rate degradation due to the pressure on BRAMs

Optimization 2:
Switching Parallelization Dimensions (2)

12

• Parallelize along width & height
dimensions Hadamard products

• Parallelize along batch & channel
dimensions Matrix dot products

• Systolic array: blocked matrix multiplication

• Analysis
• BRAM accesses/cycle for DSP operations

• Efficient for FPGAs with large number of DSPs

Optimization 3: Design Space Exploration

13

• Challenge:
• Large Design space:

• 4 HW parameters: Parallelism of modules
• 3 SW parameters: Data layout & tiling

• Optimization goal:
• Inference throughput (batch processing)
 Identify bottleneck stage in the pipeline

• Optimization Problem/Constraints: (see paper)
1. SW-HW coordination Tiling matches (device) parallelism
2. Limited resources Share DSP: FFT / Sys-array / IFFT

Share BRAM: input / kernel / output buffers
Share bandwidth: input / output activation

3. Load-balance Keep the pipeline always busy

• Optimization Technique: Hierarchical priority parameter sweep

Experimental Setup

14

• Target FPGA devices Stratix-10 GX, Stratix-V GX

• Bit widths 2- to 16-bit

• CNNs AlexNet, VGG16

• Tool execution Intel Core-i5 CPU

Design space exploration + generation

Comparison with State-of-the-art Designs (1)

15

• Comparison with state-of-the-art spectral CNN tool (FPGA ’18)

AlexNet VGG16

FPGA ’18 * Proposed FPGA ’18 * Proposed

FPGA Stratix-10
GX2800

Stratix-10
GX2800

Stratix-10
GX2800

Stratix-10
GX2800

Clock (MHz) 120 200 120 200

Quantization 16-bit 16-bit 16-bit 16-bit

DSP 3264 (56%) 3264 (56%) 3264 (56%) 3264 (56%)

Logic 413K (45%) 140K (15%) 419K (47%) 140K (15%)

BRAM 6129 (52%) 1616 (22%) 6133 (32%) 2616 (22%)

Throughput
(img/sec) 1704 2841 77 129

*: Original design on Strativ-V; Re-implemented on Stratix-10

Switching
parallelization
dimensions
improves clock
rate

Optimized
architectural
template
reduces logic

Comparison with State-of-the-art Designs (3)

16

• Comparison with state-of-the-art spatial CNN tool (ICCAD ’18)

16-bit
AlexNet VGG16

ICCAD ’18 Proposed ICCAD ’18 Proposed

FPGA UltraScale
KU115

Stratix-10
GX2800

UltraScale
KU115

Stratix-10
GX2800

Clock (MHz) 220 200 235 200

Quantization 16-bit 16-bit 16-bit 16-bit

DSP 4854 (88%) 3264 (56%) 4318 (78%) 3264 (56%)

Logic 262K (40%) 140K (15%) 258K (39%) 140K (15%)

BRAM 986 (46%) 1616 (22%) 1578 (81%) 2616 (22%)

Throughput
(img/sec) 1126 2841 65 129

Comparison with State-of-the-art Designs (3)

17

• Comparison with state-of-the-art spatial CNN tool (ICCAD ’18)

8-bit
AlexNet VGG16

ICCAD ’18 Proposed ICCAD ’18 Proposed

FPGA UltraScale
KU115

Stratix-10
GX2800

UltraScale
KU115

Stratix-10
GX2800

Clock (MHz) 220 200 235 200

Quantization 8-bit 8-bit 8-bit 8-bit

DSP 4854 (88%) 4480 (78%) 4318 (78%) 4480 (78%)

Logic 262K (40%) 150K (16%) 258K (39%) 150K (16%)

BRAM 986 (46%) 5232 (45%) 1578 (81%) 5232 (45%)

Throughput
(img/sec) 2252 9114 130 308

Throughput improvement due to
• Spectral convolution algorithm
• Optimized design generation process

Evaluation on Flexibility (1)

18

• Flexibility w.r.t. CNN models

Layer index

Evaluation on Flexibility (2)

19

• Flexibility w.r.t. FPGA resources

Fraction of DSPs available Fraction of BRAMs available

Flexible Tool for Automatic Generation of Pruned
and Quantized Spectral CNNs: The Big Picture

Training +
Optimization

PruningQuantization

Design Space
Exploration

Quantization
Parameters

Sparsity Constraints

Hardware
Constraints

Compressed
CNN Model

FPGA

Abstraction

Model Training Data

H
ar

dw
ar

e
Ab

st
ra

ct
io

n

Hardware
Mapping Engine

C++ Verilog

H/W Building
Blocks: FFT, SPN

Systolic ArrayQ
ua

nt
iz

at
io

n
Co

ns
tr

ai
nt

s

fpga.usc.edu

Conclusion

21

• Design automation tool for generating high throughput spectral CNN

accelerator

• Flexibility:

• CNN models

• Quantization schemes

• FPGA devices

• Significantly higher throughput () than designed by state-of-the-art tools

• Spatial or Spectral??

• Implications: Multi-core, GPU platforms??

Thank you!

https://fpga.usc.edu/
prasanna@usc.edu

22

