

A Flexible Design Automation Tool for Accelerating Quantized Spectral CNNs

Rachit Rajat, Hanqing Zeng, Viktor Prasanna University of Southern California <u>fpga.usc.edu</u>

FPL 2019, Barcelona

Outline

- Introduction
- Background
- Tool overview
- Architecture template
- Optimizations
- Experiments
- Conclusion

Introduction

- **Challenges** in CNN inferencing on FPGAs:
 - <u>Computation complexity</u>: sliding window operations
 - <u>Design effort</u>: design space search & manual hardware implementation
 - <u>Design optimization</u>: resource utilization & clock rate for large scale designs
 - <u>Design flexibility</u>: various CNN models and FPGAs and

performance requirements

- **Need** fast generation of:
 - <u>Performance meta-data</u> to tune CNN models
 - <u>Hardware code</u> to deploy inference pipeline

Background & Motivation: Spectral CNN on FPGAs

Convolutional Neural Networks (CNN)

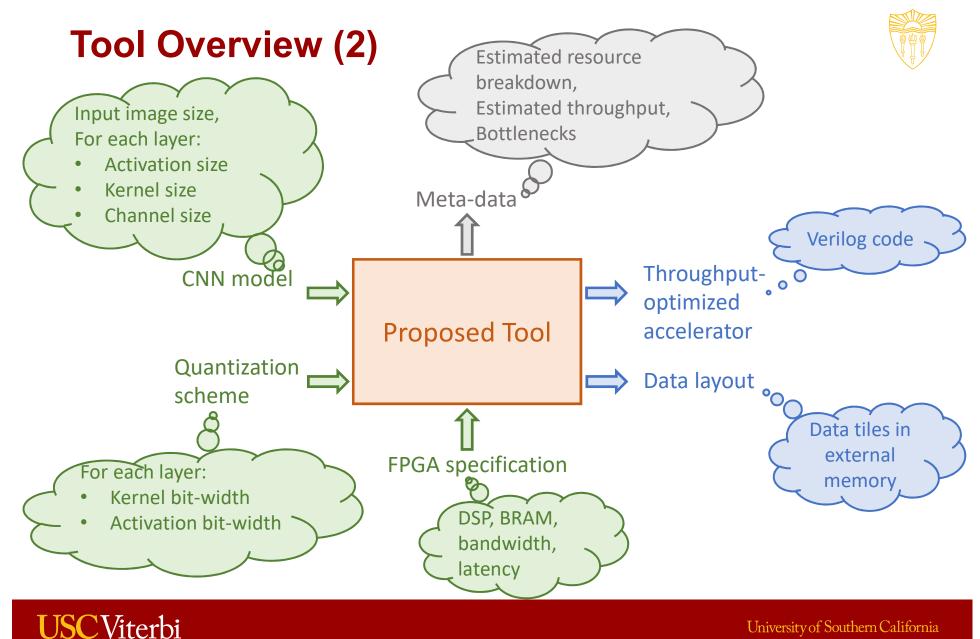
- Spectral convolution [1]
 - Sliding window operation \rightarrow Hadamard product
 - $I^{\text{output}} = \mathcal{F}^{-1}(\mathcal{F}(I^{\text{input}}) \circ K^{\text{spec}})$
 - Partitioning on *I* and padding on *K*, Overlap-and-Add
- \mathcal{F} : Fourier transform
- \mathcal{F}^{-1} : Inverse Fourier transform
- *I**: image
- *K*^{spec}: conv. kernels after FFT

- Why spectral CNNs?
 - Computation reduction: $3 \sim 4 \times$ for AlexNet, VGG16,....

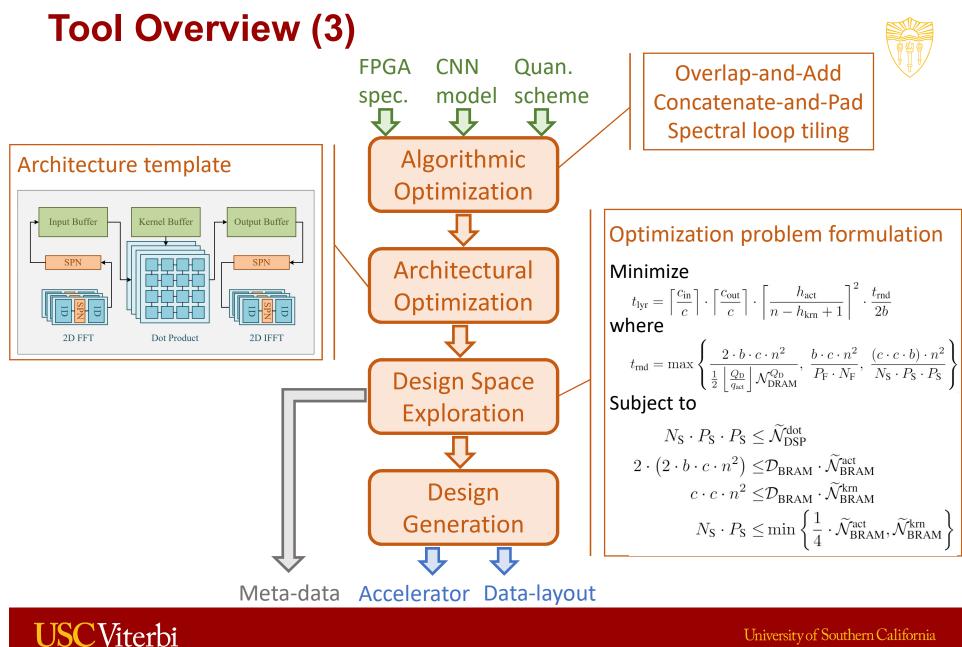
[1]: Zeng, Chen, Zhang, Prasanna, A framework for generating high throughput CNN implementations on FPGAs, Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays

Problem is Non-trivial

- **Goal**: Fast and flexible design space exploration and generation of Verilog for *high throughput* inference
- **Constraints**: Limited BRAM and DSP resources
- Need to explore a huge design space quickly
- Optimization needed in spectral convolution engine to support large FPGA devices

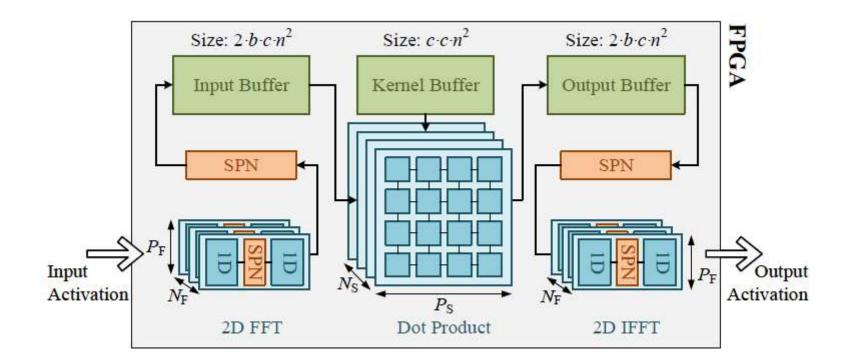


Tool Overview (1)



- Automated tool for generating quantized spectral CNN accelerators in synthesizable Verilog
- Performance metrics
 - Time to generate design
 - Throughput of generated design
- Flexibility
 - Quantization schemes
 - Various bit widths for kernels and activations
 - FPGA architecture
 - Various resources (DSPs, BRAMs, bandwidth, etc.)
 - CNN models
 - Various model parameters (channels, kernel sizes, image sizes, etc.)

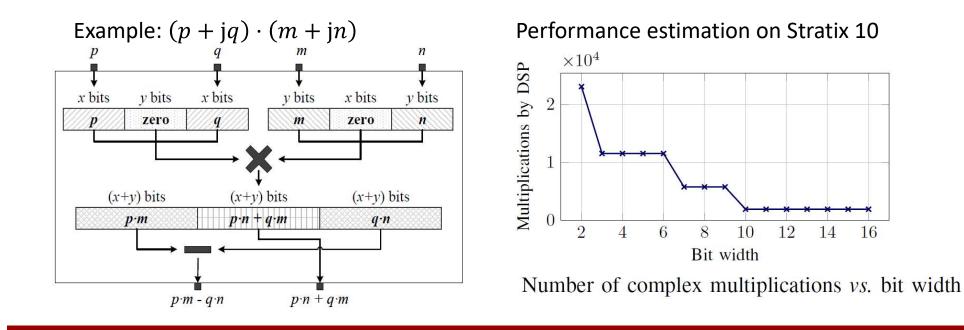
School of Engineering



School of Engineering

Architecture Template

- **Design parameters**: FFT size, FFT parallelism, batch size, systolic array size, systolic array parallelism and number of channels
- Architecture template for Verilog generation:

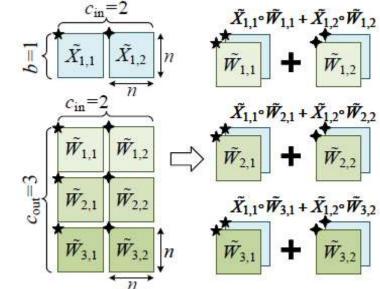


Optimization 1: Variable Bit-width Multiplier

- **Requirement** Unique to spectral CNN: low bit-width complex multiplication
- **Challenge**: DSPs accept fixed, high bit-width inputs

School of Engineering

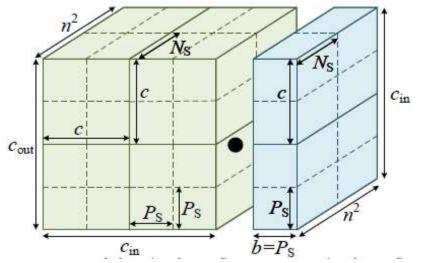
• Idea: Pad the data of low bit width to match the DSP input width



16

Optimization 2: Switching Parallelization Dimensions (1)

- Challenge: Concurrent memory accesses for Hadamard product
- Example:
 - $(1 * 2 * 3) \cdot n^2$ operations (*n* = FFT size)
 - $(1 * 2 + 2 * 3) \cdot n^2$ distinct BRAM accesses
 - Thousands of BRAM accesses per cycle to support parallelism of thousands of DSPs


• Severe **clock rate degradation** due to the pressure on BRAMs

Optimization 2: Switching Parallelization Dimensions (2)

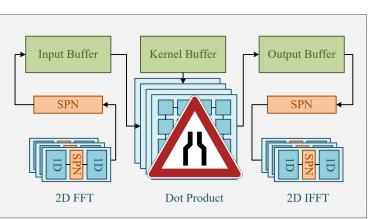
- Parallelize along width & height dimensions → H Lama products
- Parallelize along batch & channel dimensions → Matrix dot products

- Systolic array: blocked matrix multiplication
- Analysis
 - 2N BRAM accesses/cycle for $2N^2$ DSP operations
- Efficient for FPGAs with large number of DSPs

University of Southern California

Optimization 3: Design Space Exploration

- Challenge:
 - Large Design space:
 - 4 HW parameters: Parallelism of modules
 - 3 SW parameters: Data layout & tiling
- Optimization goal:
 - Inference throughput (batch processing)
 - Identify bottleneck stage in the pipeline
- Optimization Problem/Constraints: (see paper)
 - 1. SW-HW coordination Tiling matches (device) parallelism
 - 2. Limited resources


Load-balance

Tiling matches (device) parallelism Share DSP: FFT / Sys-array / IFFT Share BRAM: input / kernel / output buffers Share bandwidth: input / output activation Keep the pipeline always busy

Optimization Technique: Hierarchical priority parameter sweep

3.

Experimental Setup

- Target FPGA devices Stratix-10 GX, Stratix-V GX
- **Bit widths** 2- to 16-bit
- CNNs AlexNet, VGG16
- Tool execution Intel Core-i5 CPU

Design space exploration + generation < 2 sec

Comparison with State-of-the-art Designs (1)

• Comparison with state-of-the-art spectral CNN tool (FPGA '18)

	AlexNet		VGG16		
	FPGA '18 *	Proposed	FPGA '18 *	Proposed	
FPGA	Stratix-10 GX2800	Stratix-10 GX2800	Stratix-10 GX2800	Stratix-10 GX2800	
Clock (MHz)	120	200	120	200	
Quantization	16-bit	16-bit	16-bit	16-bit	
DSP	3264 (56%)	3264 (56%)	3264 (56%)	3264 (56%)	
Logic	413K (45%)	140K (15%)	419K (47%)	140K (15%)	
BRAM	6129 (52%)	1616 (22%)	6133 (32%)	2616 (22%)	
Throughput (img/sec)	1704	2841	77	129	

Switching parallelization dimensions improves **clock rate**

Optimized architectural template reduces **logic**

*: Original design on Strativ-V; Re-implemented on Stratix-10

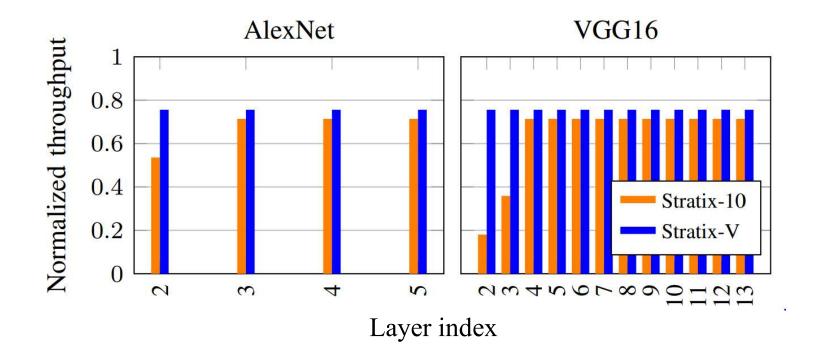
Comparison with State-of-the-art Designs (3)

• Comparison with state-of-the-art spatial CNN tool (ICCAD '18)

16-bit	AlexNet		VGG16	
	ICCAD '18	Proposed	ICCAD '18	Proposed
FPGA	UltraScale KU115	Stratix-10 GX2800	UltraScale KU115	Stratix-10 GX2800
Clock (MHz)	220	200	235	200
Quantization	16-bit	16-bit	16-bit	16-bit
DSP	4854 (88%)	3264 (56%)	4318 (78%)	3264 (56%)
Logic	262K (40%)	140K (15%)	258K (39%)	140K (15%)
BRAM	986 (46%)	1616 (22%)	1578 (81%)	2616 (22%)
Throughput (img/sec)	1126	2841	65	129

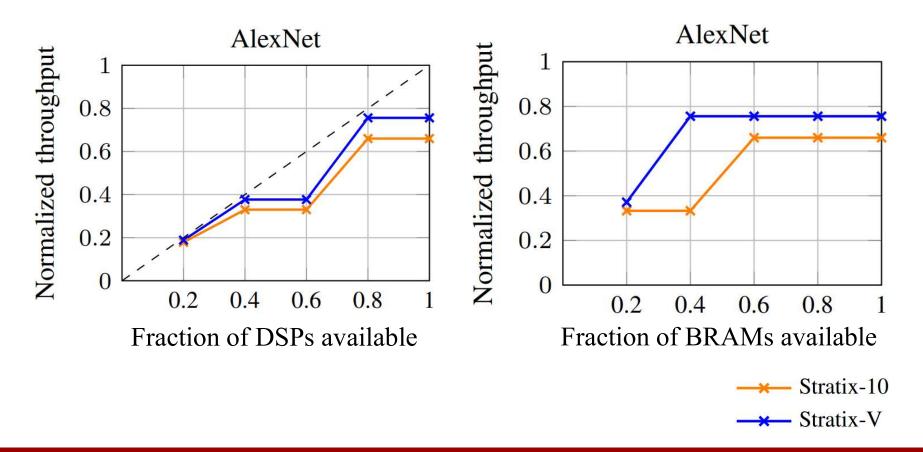
Comparison with State-of-the-art Designs (3)

• Comparison with state-of-the-art spatial CNN tool (ICCAD '18)

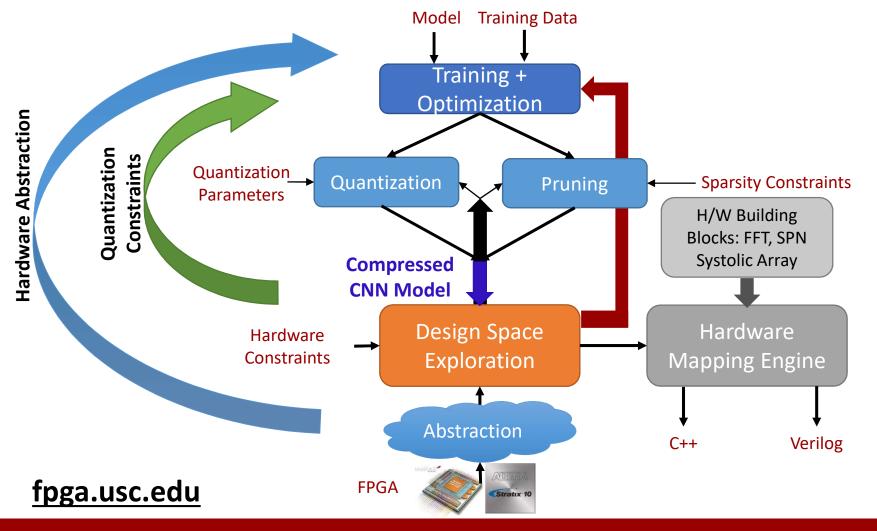

8-bit	AlexNet		VGG16			
	ICCAD '18	Proposed	ICCAD '18	Proposed		
FPGA	UltraScale KU115	Stratix-10 GX2800	UltraScale KU115	Stratix-10 GX2800		
Clock (MHz)	220	200	235	200		
Quantization	8-bit	8-bit	8-bit	8-bit		
DSP	Throughput improvement due toSpectral convolution algorithmOptimized design generation process					
Logic						
BRAM						
Throughput (img/sec)	2252	9114	130	308		

Evaluation on Flexibility (1)

• Flexibility w.r.t. CNN models



Evaluation on Flexibility (2)



• Flexibility w.r.t. FPGA resources

Flexible Tool for Automatic Generation of Pruned and Quantized Spectral CNNs: The Big Picture

USC Viterbi School of Engineering

Conclusion

- Design automation tool for generating high throughput spectral CNN accelerator
- Flexibility:
 - CNN models
 - Quantization schemes
 - FPGA devices
- Significantly higher throughput (4 \times) than designed by state-of-the-art tools
- Spatial or Spectral??
- Implications: Multi-core, GPU platforms??

Thank you!

https://fpga.usc.edu/

prasanna@usc.edu

