
© Copyright 2019 Xilinx

Di Wu, Yu Zhang, Xijie Jia, Lu Tian, Tianping Li, Lingzhi Sui,
Dongliang Xie, Yi Shan
diw@xilinx.com
09/10/2019

A High-performance CNN
Processor Based on FPGA
for MobileNets

© Copyright 2019 Xilinx

Outline

˃ Introduction
Depthwise separable convolution
MobileNetV1 and MobileNetV2

˃Our works
Scalable computation engines
Pipeline schedule among layers
Data flow for pipeline
Channel augmentation

˃Experiment results
Comparison in Classification
Comparison in Object Detection

>> 2

© Copyright 2019 Xilinx

Background
˃ CNN in computer vision tasks

˃ Traditional CNN
Huge amounts of operations
Redundant parameters
Hard to deploy

˃ State-of-art CNNs
Less operations
Less parameters
Low bit friendly
Easy to deploy

>> 3

Large and deep CNN

State-of-art CNN

© Copyright 2019 Xilinx

Depthwise separable convolution

˃ Standard convolution

˃ Depthwise separable convolution
Depthwise convolution
‒ output channel equals to Input channel

Pointwise convolution
‒ A standard convolution with 1x1 kernel

˃ Reduce the operations and parameters

𝐹ை =
ைವೄ಴

ைೄ಴
=

ଵ

ே
+

ଵ

௄మ [1]

𝐹௉ =
௉ವೄ಴

௉ೄ಴
=

ଵ

ே
+

ଵ

௄మ [1]

>> 4

K

K

N…

M

M

N

K

a. Standard convolution

M

M

M

K K

K

b. Depthwise convolution

M

… N

N
M

1

1

1

c. Pointwise convolution

[1] Andrew G. Howard et al. MobileNets: Efficient convolutional neural
networks for mobile vision applications, arXiv:1704.04861 [cs], Apr.
2017.

© Copyright 2019 Xilinx

MobileNets
Model Accuracy Mult-Adds Parameters

AlexNet 57.2% 720M 60M

GoogleNet 69.8% 1550M 6.8M

VGG 16 71.5% 15300M 138M

MobileNetV1 70.6% 569M 4.2M

MobileNetV2 72.0% 300M 3.4M

˃ Less operations and parameters.

˃ High accuracy

˃ Efficient model for computer vision tasks on
embedded devices

>> 5

Table1: Classification comparison on ImageNets

Network mAP Paras Mult-Adds

SSD300 23.2 36.1M 35.2B

SSD512 26.8 36.1M 99.5B

YOLOv2 21.6 50.7M 17.5B

MNetV1+SSDLite 22.2 5.1M 1.3B

MNetV2+SSDLite 22.1 4.3M 0.8B

Table2: Object detection comparison on COCO

MobileNets in mobile phone[1]

[1] Andrew G. Howard et al. MobileNets: Efficient convolutional neural
networks for mobile vision applications, arXiv:1704.04861 [cs], Apr.
2017.

© Copyright 2019 Xilinx

MobileNetV1 vs MobileNetV2

>> 6

New features in MobileNetV2:

˃ Linear Bottlenecks (fig. b)
Prevent valid information loss

˃ Inverted Residuals (fig. c)
Faster training and better accuracy

˃ ReLU -> ReLU6

Advantages:

˃ 2x fewer operations

˃ 30% fewer parameters

˃ 30-40% faster

˃ Reduce the bandwidth requirement

a. MNetV1 : Separable Convolution Block

b. MNetV2: Bottleneck Convolution Block

c. MNetV2 : Inverted residual Block

© Copyright 2019 Xilinx

Workload analysis

Convolution Type MAdds Operations Parameters

Pointwise Conv 1x1 94.86% 74.59%

Depthwise Conv 3x3 3.06% 1.06%

Standard Conv 3x3 1.19% 0.02%

Fully Connected (1x1) 0.18% 24.33%

>> 7

˃ The ratio of operation between standard
convolution and depthwise convolution is nearly 32.

˃ This ratio instructs us to design the computation
parallelism of different convolution engines.

Input Operator t c n s

2242 x 3 Conv2D - 32 1 2

1122 x 32 Bottleneck 1 16 1 1

1122 x 16 Bottleneck 6 24 2 2

562 x 24 Bottleneck 6 32 3 2

282 x 32 Bottleneck 6 64 4 2

142 x 64 Bottleneck 6 96 3 1

142 x 96 Bottleneck 6 160 3 2

72 x 160 Bottleneck 6 320 1 1

72 x 320 Conv2d 1x1 - 1280 1 1

72 x 1280 Avgpool 7x7 - - 1 -

12 x 1280 Conv2d 1x1 - k -

Each line describes a sequence of 1 or more identical layers,
repeated n times. All layers in the same sequence have the
same number c of output channels. The s is for stride and t is
the expansion factor.

Table3: MobileNetV2 Model Architecture

Table4: Proportion of Per Convolution Type

© Copyright 2019 Xilinx

CNN Accelerators

˃ Large and deep CNN:
Low efficiency
A lot of accelerators

˃ State-of-art CNN:
High efficiency
Less accelerators

˃ Motivation:
Deploy the state-of-art
CNN MobileNets into a
high-performance
platform

>> 8

GPU
High performance
Huge power consumption

ASIC
High performance
Low power consumption
Low flexibility

FPGA
High performance
Efficient power consumption
High flexibility

Large and deep CNN

State-of-art CNN

FPGA

© Copyright 2019 Xilinx

Our works

© Copyright 2019 Xilinx

Hardware architecture

>> 10

˃ Deep learning Processing Unit (DPU)
Instruction-driven
On-chip memory bank
Convolution Engine (Conv Engine)
Depthwise Conv Engine (Dwcv Engine)
Pooling Engine
Elementwise Engine

˃ Scalable number of on-chip bank

˃ Scalable size of Conv Engine and Dwcv
Engine

Off-Chip Memory CPU

Programmable Logic

Scheduler

INSTR Fetcher

INSTR Dispatcher

BRAM
Reader/
Writer

On-chip memory

BR
AM

BR
AM

BR
AM

BR
AM…

INSTR Parser / Data dispatcher

Conv Engine

PE PE PE…

PE PE PE…

PE PE PE…

… … …

Dwcv
Engine

PE

PE

PE

…

Pooling
Engine

Elew
Engine

Instruction Data

© Copyright 2019 Xilinx

Three Parallelisms (example of 2*2*2)

>> 11

2

1

ICP:
How many input channels are computed
in one cycle
(in this case, 2 input channels are used)

OCP:
How many out channels are generated at one cycle,
i.e, how many kernels are used at one cycle
(in this case, 2 kernels used & 2 output channels generated)

Note:
ICP: Input Channel Parallelism
OCP: Output Channel Parallelism
PP: Pixel Parallelism

PP:
How many pixels are generated in parallel
(in this case 2 pixels are generated, pixel 1&2)

PP ICP OCP

1
2

© Copyright 2019 Xilinx

Mechanism of Conv Engine & Dwcv Engine

˃ Conv Engine
Channel direction
Image width direction
Image height direction

˃ Dwcv Engine
Same orientation of Conv Engine
Output channel parallelism fixed to be 1

˃ The parallelisms of Conv Engine and Dwcv
Engine are adjustable.

>> 12

…
OCP

IH

IW

PP

a. Conv Engine

1
PP’

b. Dwcv Engine

© Copyright 2019 Xilinx

Pipeline schedule among layers

>> 13

CONV

DWCV

CONV

DWCV

C
O
N
V

Wasted Wasted

time

Computation
Parallelism

CONV

DWCV

CONV

DWCV

C
O
N
V

time

Computation
Parallelism

˃ Traditional CNN accelerator
One compute engine for standard
convolution and depthwise convolution
A lot of waste
Low efficiency

˃ Our accelerator
Dedicated Dwcv engine for depthwise
convolution
Less waste
Less runtime and higher efficiency

˃ Adjust the computation parallelism of
Conv Engine and Dwcv Engine.

© Copyright 2019 Xilinx

Conv Engine and Dwcv Engine work in pipeline

˃ Transform the granularity of
data dependence from whole
output feature map to a row of
feature map

Tighten the pipeline between
Conv Engine and Dwcv
Engine
Improve the efficiency of
whole network

>> 14

…
Conv

Engine

Dwcv
Engine

…

Off-chip
Memory

feature bank0

feature bank1

layer0

layer1

layer2 layer4 layer6

layer3 layer5 layer7

layer0

layer1

layer2 layer4 layer6

layer3 layer5 layer7

time

time

Computation
Parallelism

Computation
Parallelism

a. Data flow of Conv Engine and Dwcv Engine

b. Pipeline among layers

© Copyright 2019 Xilinx

Channel Augmentation

˃ Input Channel far less
than the Input Channel
Parallelism:

Consume more cycle
to finish operation
Low efficiency

˃ Channel Augmentation:
Rearrange the data
format of input feature
and weights

Consume less cycle
Higher efficiency

>> 15

p1

p2

p0

p0

© Copyright 2019 Xilinx

Experiment results

© Copyright 2019 Xilinx

Implementation Notes

˃ Xilinx ZU2EG and ZU9EG

˃ 8bit Activation and Weights quantization

˃ Without fine tune

˃ Clock frequency:

ZU2 - 430MHz
ZU9 – 330MHz

DPU LUT FF BRAM(36k) DSP48

DPU_ZU2 31198 46809 145 212

DPU_ZU9 161944 301416 771 2070

>> 17

Table5: Resources of different DPUs

© Copyright 2019 Xilinx

Acceleration based on Channel Augmentation

˃ For the first layer:
Input channel : 3 (general)
Kernel size :3x3

The ICP is lager than the IC

Theoretical efficiency:
‒ 3/12 -> 9/12
‒ 3/16 -> 9/16

The operation of first layer accounts for a
large proportion : 6%

The Channel Augmentation has a
significant acceleration for the first layer.
‒ Speedup on ZU2 : 1.9x
‒ Speedup on ZU9: 2.1x

Platform Configuration Runtime(ms) Speedup

ZU2
Without Augm 0.42

1.9x
With Augm 0.22

ZU9
Without Augm 0.21

2.1x
With Augm 0.10

>> 18

DPU ICP OCP PP

DPU_ZU2 12 12 4

DPU_ZU9 16 16 8

Table4: Acceleration based on Channel Augmentation
for MobileNetV2 layer1

Table3: Parallelisms of two DPUs

© Copyright 2019 Xilinx

Classification Results

>> 19

Design Network Platform Speed (fps) Top1 Accuracy Prec. (W/a)

[1] MobileNetV2 CPU 13.3 72.0% 32b

[2] RR-MobileNet ZU9EG 127.4 64.6% 8-4b

[3] MobileNetV1 Stratix V 231.7 - -

[4] DiracDeltaNet ZU3EG 96.5 68.47% 1-4b

[5] MobileNetV2 Arria10 266.2 - 16b

This work MobileNetV2 ZU2EG 205.3 68.1% 8b

This work MobileNetV2 ZU9EG 809.8 68.1% 8b

[1] Sandler, et al. MobileNetV2:Inverted Residuals and Linear Bottlenecks. CVPR, 2018.
[2] J. Su et al., ”Redundancy-reduced mobilenet acceleration on reconfigurable logic for ImageNet classification”, Proc. Appl. Reconfig.
Comput. Archit. Tools Appl., pp. 16-28, 2018.
[3] R. Zhao, X. Niu, W. Luk, ”Automatic optimising CNN with depthwise separable convolution on FPGA: (Abstract only)”, FPGA, 2018.
[4] Yifan Yang, et al. Synetgy: Algorithm-hardware Codesign for ConvNet Accelerators on Embedded FPGAs. (FPGA’19).
[5] Bai L , Zhao Y , Huang X . A CNN Accelerator on FPGA Using Depthwise Separable Convolution[J]. IEEE Transactions on Circuits &
Systems II Express Briefs, 2018.

Table6: Comparison of classification on ImageNet

© Copyright 2019 Xilinx

Detection Results

>> 20

Framework Platform Speed (fps) Prec. (W/a) mAP

MobileNetV1 + SSD ZU2EG (this work) 31.0 8b 22.1𝛼

MobileNetV1 + SSD ZU9EG (this work) 124.3 8b 16.2𝛼

MobileNetV2 + SSD ZU9EG (this work) 138.0 8b 29.4𝛽

Note: 𝛼The detection results are tested on the COCO dataset. Input size 320x320
𝛽The detection results are tested on the Bdd100k dataset, Input size : 480x360

Table7: Performance of object detection

© Copyright 2019 Xilinx

Demo - Classification

>> 21

Classification Detection

© Copyright 2019 Xilinx

Demo - Detection

>> 22

© Copyright 2019 Xilinx

Conclusion

˃ Deploy the MobileNets into FPGAs
Efficient model
Low bandwidth requirement

˃ Improve the implementation efficiency of MobileNets
Design a dedicated Dwcv Engine for depthwise convolution
Adjust the computation parallelism of Conv Engine and Dwcv Engine for MobileNets
architecture
Pipeline the standard convolution and depthwise convolution in MobileNets
Use Channel Augmentation for the layer which input channel is far less than the input channel
parallelism

˃ Implementation results
Image classification on ImageNet: ZU2EG: 205.3fps ZU9EG: 809.8fps
Object detection : MobileNetV1 + SSD on ZU2 : 31fps

MobileNetV1 + SSD on ZU9 : 124.3fps
MobileNetV2 + SSD on ZU9 : 138.0fps

>> 23

© Copyright 2019 Xilinx

Adaptable.
Intelligent.

