A High-performance CNN Processor Based on FPGA for MobileNets

<u>Di Wu</u>, Yu Zhang, Xijie Jia, Lu Tian, Tianping Li, Lingzhi Sui, Dongliang Xie, Yi Shan diw@xilinx.com 09/10/2019

© Copyright 2019 Xilinx

Outline

> Introduction

- >> Depthwise separable convolution
- MobileNetV1 and MobileNetV2

>Our works

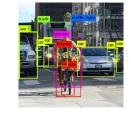
- Scalable computation engines
- >> Pipeline schedule among layers
- Data flow for pipeline
- >> Channel augmentation

> Experiment results

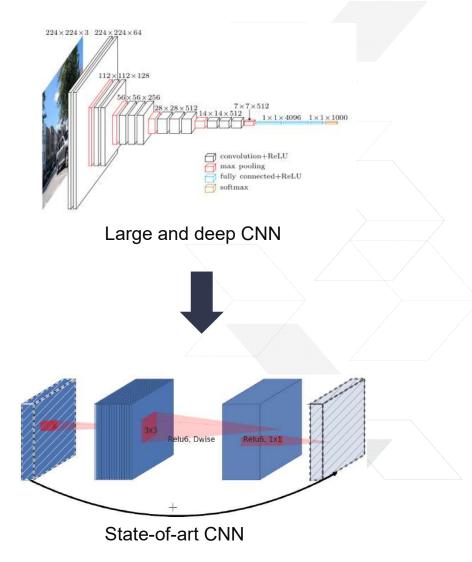
- Comparison in Classification
- Comparison in Object Detection

Background

> CNN in computer vision tasks

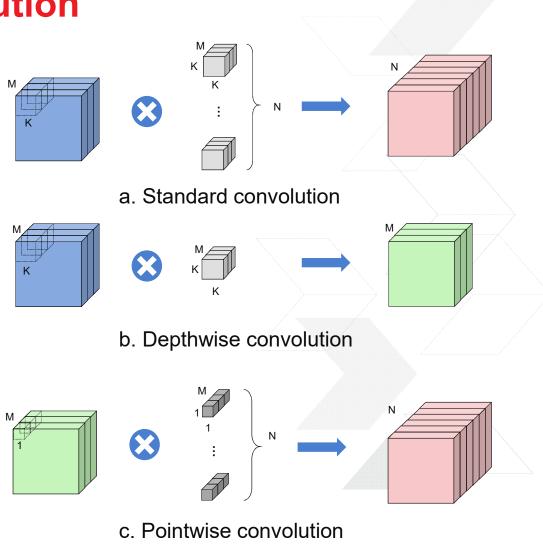


- > Traditional CNN
 - >> Huge amounts of operations
 - >> Redundant parameters
 - >> Hard to deploy
- > State-of-art CNNs
 - >> Less operations
 - Less parameters
 - >> Low bit friendly
 - >> Easy to deploy



Depthwise separable convolution

- > Standard convolution
- > Depthwise separable convolution
 - >> Depthwise convolution
 - output channel equals to Input channel
 - » Pointwise convolution
 - A standard convolution with 1x1 kernel
- > Reduce the operations and parameters
 - >> $F_O = \frac{O_{DSC}}{O_{SC}} = \frac{1}{N} + \frac{1}{K^2}$ [1] >> $F_P = \frac{P_{DSC}}{P_{SC}} = \frac{1}{N} + \frac{1}{K^2}$ [1]
- [1] Andrew G. Howard et al. MobileNets: Efficient convolutional neural networks for mobile vision applications, arXiv:1704.04861 [cs], Apr. 2017.

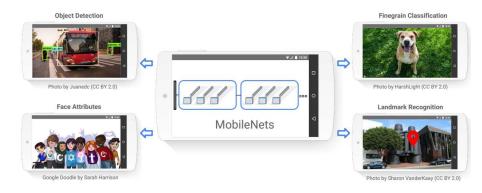


E XILINX.

© Copyright 2019 Xilinx

MobileNets

- > Less operations and parameters.
- > High accuracy
- Efficient model for computer vision tasks on embedded devices



MobileNets in mobile phone[1]

[1] Andrew G. Howard et al. MobileNets: Efficient convolutional neural networks for mobile vision applications, arXiv:1704.04861 [cs], Apr. 2017.

Model	Accuracy	Mult-Adds	Parameters
AlexNet	57.2%	720M	60M
GoogleNet	69.8%	1550M	6.8M
VGG 16	71.5%	15300M	138M
MobileNetV1	70.6%	569M	4.2M
MobileNetV2	72.0%	300M	3.4M

Table1: Classification comparison on ImageNets

Network	mAP	Paras	Mult-Adds
SSD300	23.2	36.1M	35.2B
SSD512	26.8	36.1M	99.5B
YOLOv2	21.6	50.7M	17.5B
MNetV1+SSDLite	22.2	5.1M	1.3B
MNetV2+SSDLite	22.1	4.3M	0.8B

Table2: Object detection comparison on COCO

© Copyright 2019 Xilinx

>> 5

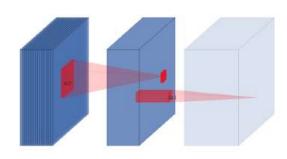
MobileNetV1 vs MobileNetV2

New features in MobileNetV2:

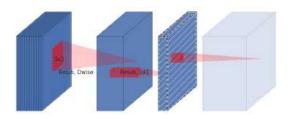
- > Linear Bottlenecks (fig. b)
 - >> Prevent valid information loss
- > Inverted Residuals (fig. c)
 - >> Faster training and better accuracy
- > ReLU -> ReLU6

Advantages:

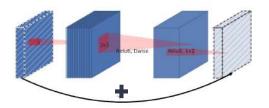
- > 2x fewer operations
- > 30% fewer parameters
- > 30-40% faster
- > Reduce the bandwidth requirement



a. MNetV1 : Separable Convolution Block



b. MNetV2: Bottleneck Convolution Block



c. MNetV2 : Inverted residual Block

>> 6

© Copyright 2019 Xilinx

E XILINX.

Workload analysis

Table3: MobileNetV2 Model Architecture

Input	Operator	t	С	n	S
224 ² x 3	Conv2D	-	32	1	2
112 ² x 32	Bottleneck	1	16	1	1
112 ² x 16	Bottleneck	6	24	2	2
56 ² x 24	Bottleneck	6	32	3	2
28 ² x 32	Bottleneck	6	64	4	2
14 ² x 64	Bottleneck	6	96	3	1
14 ² x 96	Bottleneck	6	160	3	2
7 ² x 160	Bottleneck	6	320	1	1
7 ² x 320	Conv2d 1x1	-	1280	1	1
7 ² x 1280	Avgpool 7x7	-	-	1	-
1 ² x 1280	Conv2d 1x1	-	k	-	

Each line describes a sequence of 1 or more identical layers, repeated n times. All layers in the same sequence have the same number c of output channels. The s is for stride and t is the expansion factor.

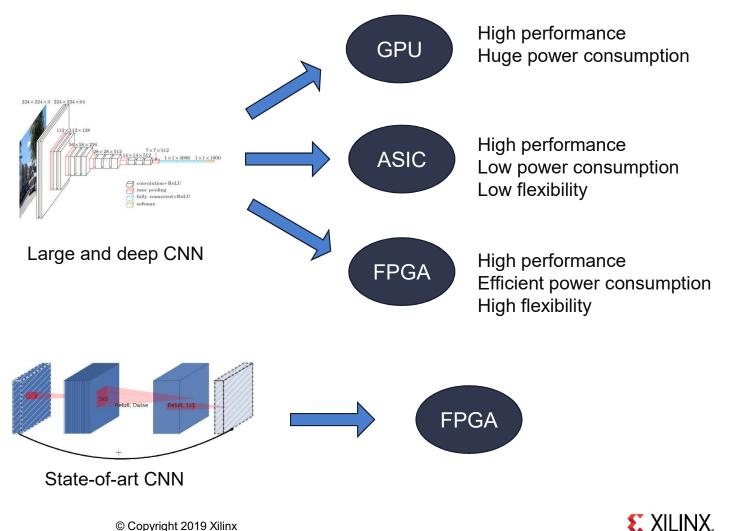
Convolution Type	MAdds Operations	Parameters			
Pointwise Conv 1x1	94.86%	74.59%			
Depthwise Conv 3x3	3.06%	1.06%			
Standard Conv 3x3	1.19%	0.02%			
Fully Connected (1x1)	0.18%	24.33%			
Table4: Proportion of Per Convolution Type					

- > The ratio of operation between standard convolution and depthwise convolution is nearly 32.
- > This ratio instructs us to design the computation parallelism of different convolution engines.

E XILINX.

CNN Accelerators

- > Large and deep CNN:
 - >> Low efficiency
 - >> A lot of accelerators
- > State-of-art CNN[.]
 - >> High efficiency
 - >> Less accelerators
- > Motivation:
 - >> Deploy the state-of-art CNN MobileNets into a high-performance platform

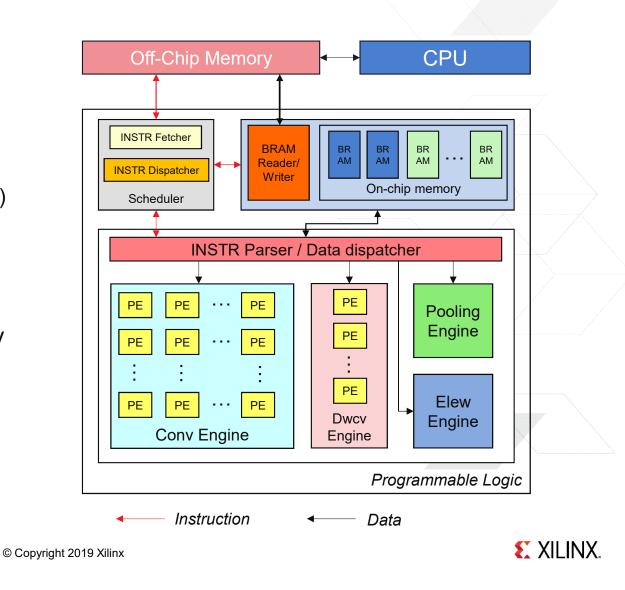


Our works

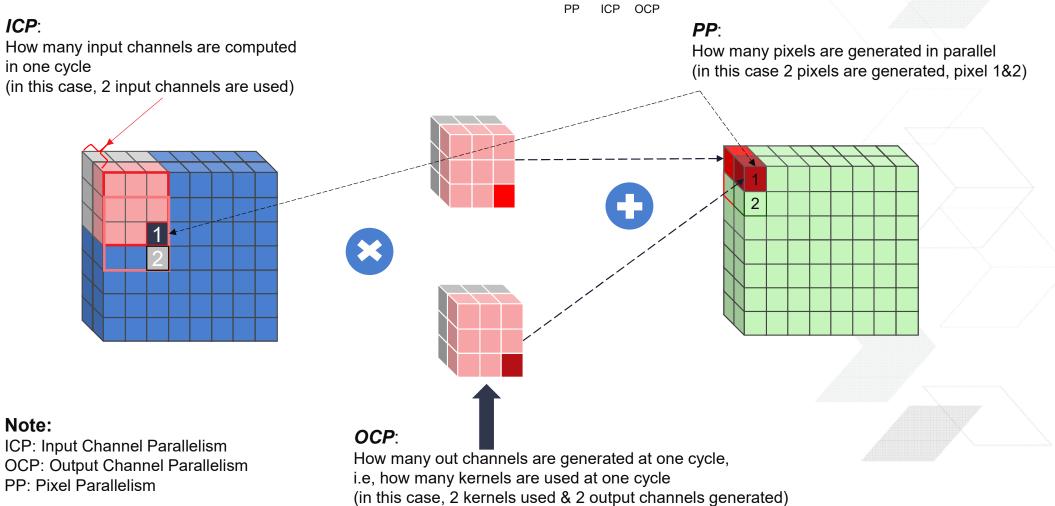
Copyright 2019 Xilinx

Hardware architecture

- > Deep learning Processing Unit (DPU)
 - Instruction-driven
 - >> On-chip memory bank
 - >> Convolution Engine (Conv Engine)
 - >> Depthwise Conv Engine (Dwcv Engine)
 - Pooling Engine
 - >> Elementwise Engine
- > Scalable number of on-chip bank
- Scalable size of Conv Engine and Dwcv Engine



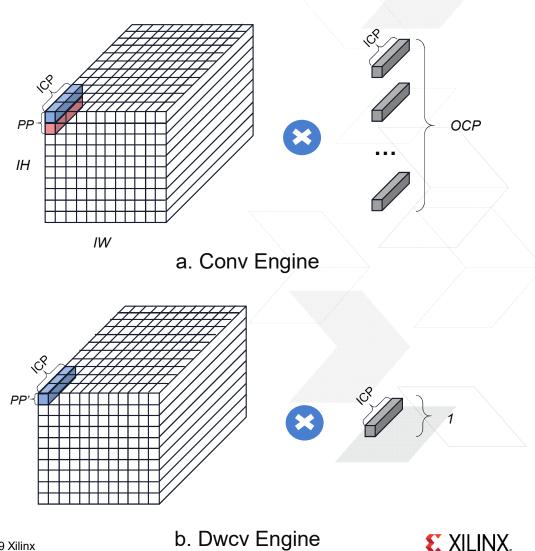
Three Parallelisms (example of 2*2*2)



E XILINX.

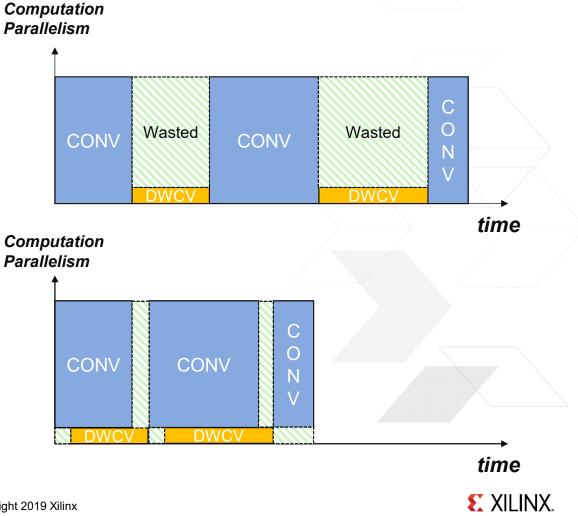
Mechanism of Conv Engine & Dwcv Engine

- > Conv Engine
 - >> Channel direction
 - >> Image width direction
 - >> Image height direction
- > Dwcv Engine
 - >> Same orientation of Conv Engine
 - >> Output channel parallelism fixed to be 1
- > The parallelisms of Conv Engine and Dwcv Engine are adjustable.

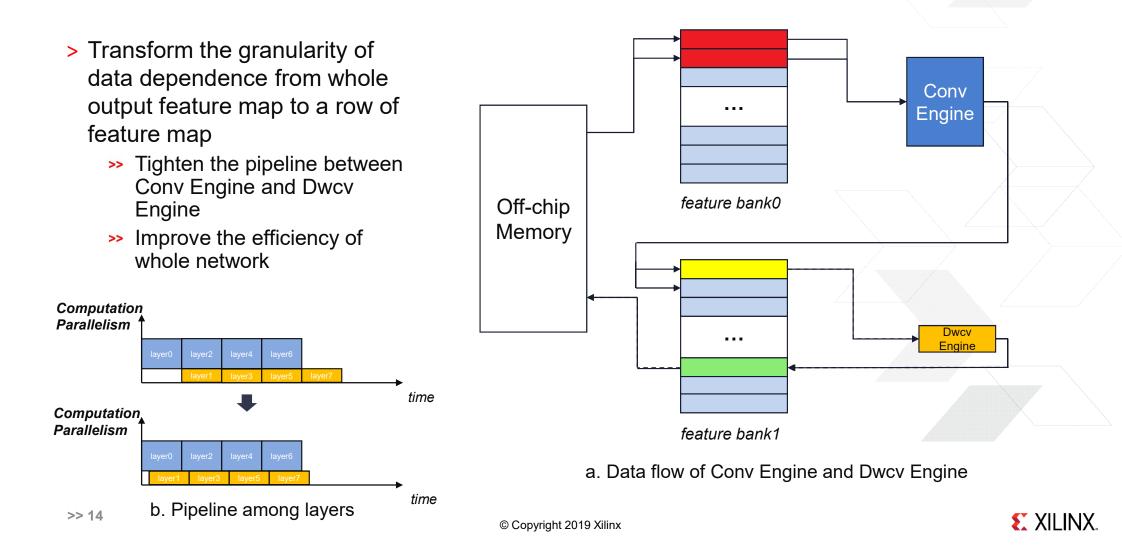


Pipeline schedule among layers

- > Traditional CNN accelerator
 - >> One compute engine for standard convolution and depthwise convolution
 - >> A lot of waste
 - >> Low efficiency
- > Our accelerator
 - Dedicated Dwcv engine for depthwise convolution
 - >> Less waste
 - Less runtime and higher efficiency
- > Adjust the computation parallelism of Conv Engine and Dwcv Engine.

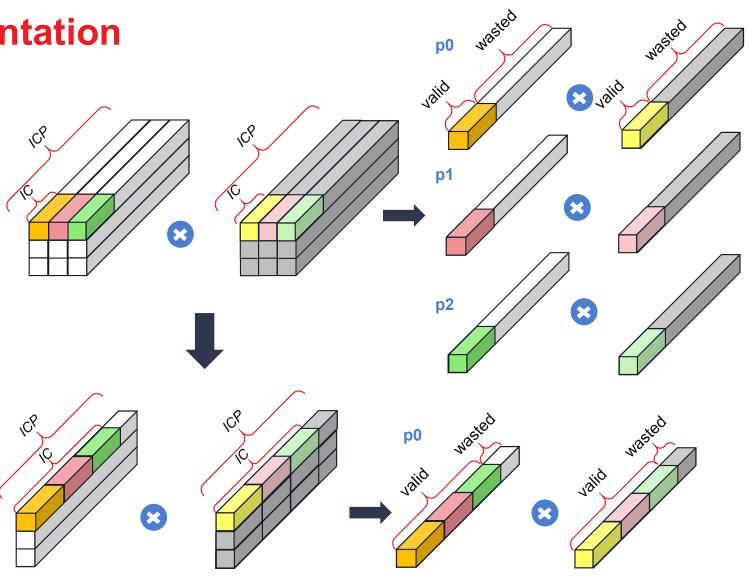


Conv Engine and Dwcv Engine work in pipeline



Channel Augmentation

- Input Channel far less than the Input Channel Parallelism:
 - Consume more cycle to finish operation
 - >> Low efficiency
- Channel Augmentation: Rearrange the data format of input feature and weights
 - >> Consume less cycle
 - >> Higher efficiency



Experiment results

© Copyright 2019 Xilinx

Implementation Notes

- > Xilinx ZU2EG and ZU9EG
- > 8bit Activation and Weights quantization
- > Without fine tune
- > Clock frequency:
 - >> ZU2 430MHz
 - >> ZU9 330MHz

DPU	LUT	FF	BRAM(36k)	DSP48
DPU_ZU2	31198	46809	145	212
DPU_ZU9	161944	301416	771	2070

Table5: Resources of different DPUs

Acceleration based on Channel Augmentation

- > For the first layer:
 - >> Input channel : 3 (general)
 - >> Kernel size :3x3
 - >> The ICP is lager than the IC
 - >> Theoretical efficiency:
 - 3/12 -> <mark>9/12</mark>
 - 3/16 -> <mark>9/16</mark>
 - The operation of first layer accounts for a large proportion : 6%
 - >> The Channel Augmentation has a significant acceleration for the first layer.
 - Speedup on ZU2 : 1.9x
 - Speedup on ZU9: 2.1x

DPU	ICP	OCP	PP
DPU_ZU2	12	12	4
DPU_ZU9	16	16	8

Table3: Parallelisms of two DPUs

Platform	Configuration	Runtime(ms)	Speedup
7110	Without Augm	0.42	1.0×
ZU2	With Augm	0.22	1.9x
7110	Without Augm	0.21	2.1x
ZU9	With Augm	0.10	Z. 1X

Table4: Acceleration based on Channel Augmentation for MobileNetV2 layer1

Classification Results

Design	Network	Platform	Speed (fps)	Top1 Accuracy	Prec. (W/a)
[1]	MobileNetV2	CPU	13.3	72.0%	32b
[2]	RR-MobileNet	ZU9EG	127.4	64.6%	8-4b
[3]	MobileNetV1	Stratix V	231.7	-	-
[4]	DiracDeltaNet	ZU3EG	96.5	68.47%	1-4b
[5]	MobileNetV2	Arria10	266.2	-	16b
This work	MobileNetV2	ZU2EG	205.3	68.1%	8b
This work	MobileNetV2	ZU9EG	809.8	68.1%	8b

Table6: Comparison of classification on ImageNet

[1] Sandler, et al. MobileNetV2:Inverted Residuals and Linear Bottlenecks. CVPR, 2018.

[2] J. Su et al., "Redundancy-reduced mobilenet acceleration on reconfigurable logic for ImageNet classification", Proc. Appl. Reconfig. Comput. Archit. Tools Appl., pp. 16-28, 2018.

[3] R. Zhao, X. Niu, W. Luk, "Automatic optimising CNN with depthwise separable convolution on FPGA: (Abstract only)", FPGA, 2018. [4] Yifan Yang, et al. Synetgy: Algorithm-hardware Codesign for ConvNet Accelerators on Embedded FPGAs. (FPGA'19).

[5] Bai L, Zhao Y, Huang X. A CNN Accelerator on FPGA Using Depthwise Separable Convolution[J]. IEEE Transactions on Circuits & Systems II Express Briefs, 2018.

© Copyright 2019 Xilinx

Detection Results

Framework	Platform	Speed (fps)	Prec. (W/a)	mAP
MobileNetV1 + SSD	ZU2EG (this work)	31.0	8b	22.1 ^{<i>α</i>}
MobileNetV1 + SSD	ZU9EG (this work)	124.3	8b	16.2 ^{<i>α</i>}
MobileNetV2 + SSD	ZU9EG (this work)	138.0	8b	29.4 ^{<i>β</i>}

Table7: Performance of object detection

Note: ^{α} The detection results are tested on the COCO dataset. Input size 320x320 ^{β} The detection results are tested on the Bdd100k dataset, Input size : 480x360

© Copyright 2019 Xilinx

E XILINX.

Demo - Classification

Demo - Detection

Conclusion

- > Deploy the MobileNets into FPGAs
 - Efficient model
 - » Low bandwidth requirement
- > Improve the implementation efficiency of MobileNets
 - >> Design a dedicated Dwcv Engine for depthwise convolution
 - Adjust the computation parallelism of Conv Engine and Dwcv Engine for MobileNets architecture
 - >> Pipeline the standard convolution and depthwise convolution in MobileNets
 - >> Use Channel Augmentation for the layer which input channel is far less than the input channel parallelism
- > Implementation results
 - >> Image classification on ImageNet: ZU2EG: 205.3fps ZU9EG: 809.8fps
 - >> Object detection : MobileNetV1 + SSD on ZU2 : 31fps

MobileNetV1 + SSD on ZU9 : 124.3fps MobileNetV2 + SSD on ZU9 : 138.0fps

E XILINX

Adaptable. Intelligent.

Copyright 2019 Xilinx