Finding a Needle in the Haystack of Hardened Interconnect Patteris

S. Nikolic, G. Zgheib*, and P. Ienne

 FPL19, Barcelona, 09,09.2019École Polytechnique Fédérale de Lausanne *Intel Corporation

Why harden connections?

What is the price?

Cluster architecture

XC4000 [1]

Triptych [3]

UTFPGA1 [2]

[1] H.-C. Hsieh, W. S. Carter, J. Ja, E. Cheung, S. Schreifels, C. Erickson, P. Freidin, L. Tinkey, and R. Kanazawa. Third-generation architecture boosts speed and density of field-programmable gate arrays, 1990
[2] P. Chow, S. O. Seo, D. Au, B. Fallah, C. Li, and J. Rose. A 1.2 um CMOS FPGA using cascaded logic blocks and segmented routing, 1991
[3] C. Ebeling, G. Borriello, S. A. Hauck, D. Song, E. A. Walkup. TRIPTYCH: A New FPGA Architecture, 1991

Challenges

How to map on patterns?
 (CAD tool scalability)

Challenges

How to design the patterns?

How to map on patterns?
(CAD tool scalability)

Challenges

How to design the patterns?

- Intuition?

Challenges

How to design the patterns?
How to map on patterns?
(CAD tool scalability)

- Intuition?
- Enumeration

Challenges

How to design the patterns?
How to map on patterns?
(CAD tool scalability)

- Intuition?
- Enumeration

$$
5 \times 5 \text {-LUT } \sim 10^{8}
$$

Enumeration

Representation

Representation

- represent each LUT by a node (circles)

Representation

- represent each LUT by a node (circles)
- only represent shared inputs (triangles)

Representation

- represent each LUT by a node (circles)
- only represent shared inputs (triangles)

Representation

- represent each LUT by a node (circles)
- only represent shared inputs (triangles)
- each edge is a hardened connection

Enumeration (no input sharing for now)

```
//v - vertex set
G = (V, {})
expandable = (G)
while expandable {
    G = pop(expandable)
    for e in V x V {
        if keep(G + e) {
                push(G + e, expandable)
            }
    }
}
```


Enumeration (no input sharing for now)

```
//V - vertex set
G = (V, {})
expandable = (G)
while expandable {
    G = pop(expandable)
    for e in V x V {
        if keep(G + e) {
                push(G + e, expandable)
            }
    }
}
```


Enumeration (no input sharing for now)

Enumeration (no input sharing for now)

When to stop?

When area or delay stop decreasing?

When to stop?

When area or delay stop decreasing?
When area or delay start increasing?

When to stop?

Circuit to be mapped

When to stop?

Circuit to be mapped

With hardened connections

When to stop?

Circuit to be mapped

With hardened connections

When to stop?

Circuit to be mapped

With hardened connections

When to stop?

Circuit to be mapped

With hardened connections

When to stop?

Other issues: avoiding listing duplicates

Other issues: maintaining subgraph relations

Challenges

How to design the patterns?

How to map on patterns?
 (CAD tool scalability)

- Intuition?

- Enumeration

Experiments

Setup

Setup

- Search space: acyclic five 5-LUT patterns ($\sim 10^{8}$ patterns)

Setup

- Search space: acyclic five 5-LUT patterns ($\sim 10^{8}$ patterns)
- Architecture $=4 x$ the pattern with a shared crossbar (20 5-LUT clusters)

Results

Some examples

Found 261 patterns with only 12 external inputs achieving $\sim 80 \%$ packing density

Results

Conclusions

Numerical results not satisfactory (18-29\% critical path delay increase)

But...

We have an efficient way of searching for good patterns

- searched the space $\sim 10^{8}$ in $<12 h$
- search techniques completely independent of the mapping algorithms

In the future, this should help us understand what makes a good pattern and profit from connection hardening to the fullest

Thank you for attention

For questions, please see the poster

