
Timing-aware routing in the 
RapidWright framework

Leo Liu, Nachiket Kapre
leo.liu@uwaterloo.ca, nachiket@uwaterloo.ca



Background

RapidWright: Open source project for accessing low-level 
resources for Xilinx FPGAs

Advantage: design generation without FPGA CAD tools

Weakness: no timing knowledge of FPGA resources; hard to 
build timing-driven tools



Problem Statement

We used RapidWright to design RapidRoute, a fast router 
for building communication networks

Problem: RapidWright does not allow RapidRoute to be 
timing-driven:

● Routing algorithms cannot optimize for shortest path
● Consistently loses to Vivado



Timing 
Slack









Solution

Build our own timing library
Main ideas:

● Extract relevant timing data using both RapidWright and 
Vivado

● Integrate extracted data into RapidRoute algorithm



Key Claim
We can extract fine-grained timing information 

of Xilinx FPGA routing resources

● Library allows RapidRoute to match Vivado performance
● Less than 10 mins of one-time analysis
● Extremely lightweight

○ RapidRoute retains its routing speed
○ Low memory overhead



Main Approach

1. Build many calibration designs with RapidWright
2. Load designs in Vivado for timing feedback
3. Organize into a linear system





0.815ns

0.887ns

0.756ns



LOGIC_OUT_E19 + SNG_DBL_15 + NN1 + IMUX_7 
+ BNCE_E11 + … = 

LOGIC_OUT_E19 + SNG_DBL_15 + NN1 + IMUX_7 
+ BYPASS_E9 + … =

LOGIC_OUT_E19 + SNG_DBL_15 + NN1 + IMUX_7 
+ BNCE_E11 + … =

0.815ns

0.756ns

0.887ns



Opportunities in Timing Extraction

Symmetry: symmetrical elements on FPGA have similar 
timing characteristics

Narrow usage: RapidRoute only targets communication 
overlays









BYPASS_E13 = 0.25ns





Calibration Designs

Designs: 1-bit signal, with changing start and end nodes

1. For each design, route in different ways
2. Write out each routing result into DCP
3. Track which nodes are used for each route







Experimental Setup
● Metrics:

○ Timing prediction accuracy
● Calibration designs

○ Single-bit routes of arbitrary displacement
○ Various devices and speed grades

● Compare methods:
○ Partition 70% training, 30% testing of all calibration runs



Experimental Setup
● Devices:

○ Ultrascale XCKU115 (-3, -2, -1 speed grades)
○ Ultrascale+ XCKU5P (-3, -2, -1 speed grades)

● Vivado: 2018.3
● RapidWright: 2018.3.3-beta
● Hardware: Intel Xeon E5-1630



Timing 
Accuracy
Measuring accuracy:

We check datapath 
prediction errors of 30% 
partition.

X-axis: size of 70% partition

Y-axis: average prediction 
error



Vivado 
Runtime





Additional Notes

● Output timing database is extremely small (< 100KB)
● Majority of timing extraction solver runtime is due to 

Vivado query wait times



Integrating with RapidRoute

● RapidRoute accepts timing database file(s) as input, 
overwriting default heuristic

● Heuristic has nearly identical computing cost as default 
heuristic



Experimental Setup
● Metrics:

○ Timing performance
○ Routing runtimes

● Communication structures:
○ 1D rings, 2D torii, 2D meshes

● Compare methods:
○ RapidRoute default, RapidRoute+Timing, Vivado



Experimental Setup
● Device: Ultrascale XCKU115 xcku115-flva1517-3-e
● Vivado: 2018.3
● RapidWright: 2018.3.3-beta
● Hardware: 32-core 2.6GHz Intel Xeon



Timing 
Results



Routing 
Runtime



Conclusion

● We developed a timing extraction tool, which is 
light-weight and highly-accurate

● Timing results expected to be within 1% error margin
● Total calibration phase takes minutes
● Extremely lightweight output and usage



Improved RapidRoute

● RapidRoute retains a 5-8x routing speed advantage over 
Vivado

● RapidRoute now gains competitive timing performance 
on communication overlay designs


