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Technology Scaling: Transforming the World

* Packing ever more computations on a single chip
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Technology Scaling: The Other Side

* Huge energy demand
 Data centers consumed 2% of total US electricity, 2014w
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Technology Scaling: The Other Side

* Huge energy demand
 Data centers consumed 2% of total US electricity, 2014w
* ICT sector to consume 9-20% of global electricity, 2025w

* Many devices are power constrained
* Mobile/edge
» Cellular base station, satellites, etc.
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Moving Away from General-Purpose Processors

* FPGAs = trade-off between flexibility and efficiency

* Users can build custom digital systems without the ASIC challenges
* Not as power efficient as ASICs

» Offer better performance/W than CPUs for many applications
* Known to have lower absolute power than CPUs
* Adopted in Microsoft, Baidu, and Amazon data centres
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FPGA Power Consumption Challenge
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FPGA Power Consumption Challenge
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What Happened?
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What Happened?

Nominal V4
not scaling
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LE count -------
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Adaptive & Dynamic Voltage Scaling (DVS)

e Academic work on DVS
* Set supply voltage (V,44) dynamically = no longer fixed to nominal
* Previous works have shown ~30% power reduction
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Adaptive & Dynamic Voltage Scaling (DVS)

* Academic work on DVS
* Set supply voltage (V,44) dynamically = no longer fixed to nominal
* Previous works have shown ~30% power reduction

* Intel SmartVID (adaptive voltage scaling)
* Each FPGA stores it’'s own supply voltage value = determined during testing
* Smart power supply sets the supply voltage based on the stored value
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Range (V) 0.85-0.9 0.8-0.94 0.6-1
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Rethinking FPGAs for Variable Supply Voltage

* FPGAs moving away from fixed nominal-V,, operation

* But, FPGAs have always been designed for fixed-V

* Goals:
* Evaluate the delay sensitivity of existing FPGA circuits to Vg,

* Design FPGAs that are better suited for variable V
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Outline

* Background

* Analyzing Existing FPGA building blocks (logic and routing)
* VPR analysis over benchmarks

* Designing new LUTs

e Summary and Future Work

% The Edward S, Rogers Sr. Department
@ | of Electrical & Computer Engineering
%% UNIVERSITY OF TORONTO



Background: Island-style FPGA Architecture
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Background: Island-style FPGA Architecture

Logic 1] Routing
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Background: Conventional FPGA Routing MUX

weak

pull-up
b
>o0—

2-stage buffer

I Jhe s

B SRAM cell storing 1

9-input two-stage multiplexer B SRAM cell storing 0
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Background: Conventional LUT Circuitry

SRAM
cells

output
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Tree-based 6-input LUT multiplexer
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Background: Conventional LUT Circuitry

A routing MUX that

connects one of the LC
/ inputs to a LUT input

local MUX

input drivers

SRAM
cells
: : : : : : S | output
Ivl, (64) lvl; (16) vl (4)
Ivl, (32) Ivl, (8) Ivlg (2)

Tree-based 6-input LUT multiplexer
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Outline

* Analyzing Existing FPGA building blocks (logic and routing)
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Analyzing Existing FPGAs: Block-level (Silicon
Measurements)
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Analyzing Existing FPGAs: Block-level (Silicon
Measurements)
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Analyzing Existing FPGAs: Block-level (Silicon
Measurements)
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Analyzing Existing FPGAs: Block-level (Spice
Simulations)
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Analyzing Existing FPGAs: Block-level (Spice
Simulations)
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Analyzing Existing FPGAs: Block-level (Spice
Simulations)
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Outline

* VPR analysis over benchmarks
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VTR benchmarks” CP Delay Breakdown
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VTR benchmarks” CP Delay Breakdown
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Outline

* Designing new LUTs
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Proposed LUTs: Decode LUT Inputs (decode LUT)

SRAM
cells 9 g g
i i } 3 E

?

I_%
s

Conventional LUT (baseline) decode LUT

* Decrease number of pass transistors in series
* Reduce number of transistors in a 6-input LUT
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Proposed LUTs: Gate Boosting LUTs (GB LUT)

Local MUX

* Add level shifter to local MUX
* Shifts from low supply voltage to the fixed SRAM 1V

i —
level shifter
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Proposed LUTs: Gate Boosting LUTs (GB LUT)

Local MUX

* Add level shifter to local MUX
* Shifts from low supply voltage to the fixed SRAM 1V

2 ri local MUX

* LUT input drivers

input drivers

supplied by the

Vaa _
SRAM 1V “
: : : : : P 7 output
Ivl, (64) vl (16) Il (4)
vl (32) v, (8) Ivlg (2)
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Proposed LUTs: TG LUTs and Hybrid LUTs

* Using TG in LUTs, while using pass transistors in routing MUXes

e Hybrid LUTs:

* Gate boosting LUTs + decoding slowest two inputs (decode-GB LUT)
* TG LUTs + decoding slowest two inputs (decode-TG LUT)
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LUT Area and Delay Analysis
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FPGA Tile (Logic + Routing) Area-Delay Product
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FPGA Tile (Logic + Routing) Area-Delay Product
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VTR Benchmarks’ CP delay (Geomean)
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VTR Benchmarks’ CP delay (Geomean)
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LUT Power Consumption
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LUT Power Consumption
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LUT Power Consumption
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LUT Power Consumption: Decoding Effects
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LUT Power Consumption: Decoding Effects

1 .2 1 1 1 1 I
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Energy and Energy-Delay? Product

* Decode-GB slightly
higher energy

* Decode-* 14% lower
ED?at 0.8V

* Decode-* 60% lower
ED?at 0.6 V
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Outline

e Summary and Future Work
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Summary & Future Work

* Delay of a conventional FPGA LUT increases by 7X when V,, reduces
from0.8Vto 0.6V

* Novel LUTs with input decoding and gate boosting
* Reduce LUT power by 28%
* VTR benchmarks geomean CP delay decrease by 14% and 45% at 0.8 V and 0.6 V
* Reduce ED? by 14% and 60% at 0.8 V and 0.6 V

* Future work
* Using separate voltage islands for LUTs and routing
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Power and F__ at different supply voltages

4.5 :
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Backup: Area-Delay Product

(Vadl, Vaan) baseline driver-and-LUT-island  driver-island  decode-driver-island
(0.6, 0.6) 2.85 2.90 2.90 4.03
(0.6, 0.7) - 1.79 1.85 2.08
(0.6, 0.8) - 1.44 1.61 1.59
(0.6, 0.9) = 157 1.59 1.40
(0.6, 1.0) = 1.34 1.58 1.37
(0T, 0.7) 1.44 1.47 1.47 1.84
(0.7, 0.8) - 1.12 1.16 1.21
(0.7, 0.9) = 1.05 1.14 1.05
(0.7, 1.0) = 1.03 1.13 0.99
(0.8, 0.8) 1.00 1.01 1.01 1.16
(0.8, 0.9) . 0.95 0.98 0.94
(0.8, 1.0) < 0.92 0.96 0.88
(0.9, 0.9) 0.97 0.99 0.99 1.01
(0.9, 1.0) - 0.96 0.97 0.92
[0, Gy 1.18 1.15 115 1.13
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Should We Rethink CAD Tools for Variable V?

* VPR limit study = V, - VS V .4-Optimization flows

used

Architecture
file @ 0.8V

STA at STA at
0.6V 1.0V

CP delay CP delay

V,,-optimization flow
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Should We Rethink CAD Tools for Variable V?

* VPR limit study = V, - VS V .4-Optimization flows m

BLIF

Architecture
file @ 0.8V

Architecture Architecture |l Architecture
file @ 0.6V file @ 0.7V fle@1V

STA at STA at
0.6V 1.0V
CP delay CP delay CP delay CP delay CP delay
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Geomean CP Delay of VTR Benchmarks

< V om-Optimization blob_merge =3¢~
Vseq-OPtimization —— mkPktMerge ==w==
sg%% stereovision = a»
* No obvious gains e, 0r1200 meons
e oEd geomean =——e=—
from V . 4-optimization \ N

e Better to focus on circuit

Normalized critical path delay
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Background: FPGA LUT and Routing Circuitry

SRAM
= 2 I (ﬁf weak
_'—LI _l—l'l _'—LI 1 pull-up
L v o
e = 2-stage buffer
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Power Modelling

* Single-input blocks: routing multiplexers, LUT input drivers, etc.
* Hspice to monitor the current drawn by the block during an input transition

Input
src

Load
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Power Modelling

* Single-input blocks: routing multiplexers, LUT input drivers, etc.
* Hspice to monitor the current drawn by the block during an input transition

Input
src

Load

e LUTs have multiple inputs and the current drawn depends on LUT mask

e Generate hundreds of random LUT masks, and for each mask:
* Monitor the current drawn when each of the LUT inputs toggles
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VTR benchmarks’” Active Power Breakdown
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VTR benchmarks’” Active Power Breakdown
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