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• Packing ever more computations on a single chip
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• Huge energy demand
• Data centers consumed 2% of total US electricity, 2014[a]

• ICT sector to consume 9-20% of global electricity, 2025[b]

5
[a] N. Jones. How to stop data centres from gobbling up the worlds electricity. Nature, 561:163-166, 09 2018.
[b] A. Shehabi et al. United States Data Center Energy Usage Report. Lawrence Berkeley National Laboratory, Berkeley, California., 2016.
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Technology Scaling: The Other Side
• Huge energy demand

• Data centers consumed 2% of total US electricity, 2014[a]

• ICT sector to consume 9-20% of global electricity, 2025[b]

• Many devices are power constrained
• Mobile/edge
• Cellular base station, satellites, etc.

6
[a] N. Jones. How to stop data centres from gobbling up the worlds electricity. Nature, 561:163-166, 09 2018.
[b] A. Shehabi et al. United States Data Center Energy Usage Report. Lawrence Berkeley National Laboratory, Berkeley, California., 2016.



Moving Away from General-Purpose Processors

• FPGAs  trade-off between flexibility and efficiency
• Users can build custom digital systems without the ASIC challenges

• Not as power efficient as ASICs
• Offer better performance/W than CPUs for many applications
• Known to have lower absolute power than CPUs
• Adopted in Microsoft, Baidu, and Amazon data centres
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FPGA Power Consumption Challenge
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What Happened?
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Nominal Vdd
not scaling 



Adaptive & Dynamic Voltage Scaling (DVS)

• Academic work on DVS
• Set supply voltage (Vdd) dynamically  no longer fixed to nominal
• Previous works have shown ~30% power reduction
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Adaptive & Dynamic Voltage Scaling (DVS)

• Academic work on DVS
• Set supply voltage (Vdd) dynamically  no longer fixed to nominal
• Previous works have shown ~30% power reduction

• Intel SmartVID (adaptive voltage scaling)
• Each FPGA stores it’s own supply voltage value  determined during testing
• Smart power supply sets the supply voltage based on the stored value
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FPGA Arria 10 Stratix 10 Agilex

Range (V) 0.85-0.9 0.8-0.94 0.6-1



Rethinking FPGAs for Variable Supply Voltage

• FPGAs moving away from fixed nominal-Vdd operation

• But, FPGAs have always been designed for fixed-Vdd

• Goals:
• Evaluate the delay sensitivity of existing FPGA circuits to Vdd
• Design FPGAs that are better suited for variable Vdd
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Outline

• Background

• Analyzing Existing FPGA building blocks (logic and routing)

• VPR analysis over benchmarks

• Designing new LUTs

• Summary and Future Work
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Background: Island-style FPGA Architecture 
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Representative FPGA tile Logic Cluster (LC) Basic Logic Element (BLE)



Background: Island-style FPGA Architecture 
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Representative FPGA tile Logic Cluster (LC) Basic Logic Element (BLE)

RoutingLogic
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9-input two-stage multiplexer

Background: Conventional FPGA Routing MUX

I0 I1 I2

I3 I4 I5

I6 I7 I8

SRAM cell storing 1

SRAM cell storing 0
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Background: Conventional LUT Circuitry

Tree-based 6-input LUT multiplexer

SRAM 
cells



20

Background: Conventional LUT Circuitry

Tree-based 6-input LUT multiplexer

SRAM 
cells

A routing MUX that 
connects one of the LC 
inputs to a LUT input



Outline

• Background

• Analyzing Existing FPGA building blocks (logic and routing)

• VPR analysis over benchmarks

• Designing new LUTs

• Summary and Future Work
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Analyzing Existing FPGAs: Block-level (Silicon 
Measurements)
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Setup to measure path delays
on a Stratix V FPGA



Analyzing Existing FPGAs: Block-level (Silicon 
Measurements)

23

Measuring different types of paths on Stratix V

Setup to measure path delays
on a Stratix V FPGA



Analyzing Existing FPGAs: Block-level (Silicon 
Measurements)
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Measuring different types of paths on Stratix V

LUT delay is more 
sensitive to Vdd

Setup to measure path delays
on a Stratix V FPGA



Analyzing Existing FPGAs: Block-level (Spice 
Simulations)
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Simulations)
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Routing delay increases with 
increasing Vdd above nominal
 Gate boosted pass transistors



Analyzing Existing FPGAs: Block-level (Spice 
Simulations)

27

LUTs get much 
slower at lower Vdd

Routing delay increases with 
increasing Vdd above nominal
 Gate boosted pass transistors



Outline

• Background

• Analyzing Existing FPGA building blocks (logic and routing)

• VPR analysis over benchmarks

• Designing new LUTs

• Summary and Future Work
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VTR benchmarks’ CP Delay Breakdown
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• Nominal: ~75% routing, ~15% 
LUT
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LUT

• 0.6 V: ~45% routing, ~50% LUT



VTR benchmarks’ CP Delay Breakdown
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• Nominal: ~75% routing, ~15% 
LUT

• 0.6 V: ~45% routing, ~50% LUT

Redesign 
LUTs



Outline

• Background

• Analyzing Existing FPGA building blocks (logic and routing)

• VPR analysis over benchmarks

• Designing new LUTs

• Summary and Future Work
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Proposed LUTs: Decode LUT Inputs (decode LUT)

• Decrease number of pass transistors in series
• Reduce number of transistors in a 6-input LUT
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Conventional LUT (baseline) decode LUT



Proposed LUTs: Gate Boosting LUTs (GB LUT)

• Add level shifter to local MUX
• Shifts from low supply voltage to the fixed SRAM 1 V
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Local MUX



Proposed LUTs: Gate Boosting LUTs (GB LUT)

• Add level shifter to local MUX
• Shifts from low supply voltage to the fixed SRAM 1 V

• LUT input drivers
supplied by the 
SRAM 1 V
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Vddl

Vddh

Local MUX

Vddl



Proposed LUTs: TG LUTs and Hybrid LUTs

• Using TG in LUTs, while using pass transistors in routing MUXes

• Hybrid LUTs:
• Gate boosting LUTs + decoding slowest two inputs (decode-GB LUT)
• TG LUTs + decoding slowest two inputs (decode-TG LUT)
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LUT Area and Delay Analysis
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FPGA Tile (Logic + Routing) Area-Delay Product
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FPGA Tile (Logic + Routing) Area-Delay Product
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• Proposed LUTs  better
FPGAs at nominal and 
below

• Decode-GB LUT  12%
lower area-delay than 
baseline at nominal



VTR Benchmarks’ CP delay (Geomean)
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• 14% faster at 0.8 V



VTR Benchmarks’ CP delay (Geomean)
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• 14% faster at 0.8 V

• 45% faster at 0.6 V



LUT Power Consumption
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LUT Power Consumption

• Decode-* LUTs have 28% 
lower power than baseline
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LUT Power Consumption

• Decode-* LUTs have 28% 
lower power than baseline

• At 0.8 V, decoding reduces the 
GB LUT and TG LUT power by 
35% and 25%, respectively
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LUT Power Consumption: Decoding Effects
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LUT Power Consumption: Decoding Effects
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• 40% power reduction 
when input A toggles

• Power reductions
when B or C toggles



Energy and Energy-Delay2 Product

• Decode-GB slightly
higher energy

• Decode-*  14% lower
ED2 at 0.8 V

• Decode-* 60% lower
ED2 at 0.6 V    
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Outline

• Background

• Analyzing Existing FPGA building blocks (logic and routing)

• VPR analysis over benchmarks

• Designing new LUTs

• Summary and Future Work
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Summary & Future Work

• Delay of a conventional FPGA LUT increases by 7X when Vdd reduces 
from 0.8 V to 0.6 V

• Novel LUTs with input decoding and gate boosting
• Reduce LUT power by 28%
• VTR benchmarks geomean CP delay decrease by 14% and 45% at 0.8 V and 0.6 V
• Reduce ED2 by 14% and 60% at 0.8 V and 0.6 V

• Future work
• Using separate voltage islands for LUTs and routing
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Power and Fmax at different supply voltages

• Decode-* outperform
baseline

• Decode-GB achieves
largest Fmax
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Backup: Area-Delay Product
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Should We Rethink CAD Tools for Variable Vdd?
• VPR limit study  Vnom- vs Vused-optimization flows

53

BLIF

VPR
Architecture 
file @ 0.8 V

.place

.route

CP delay CP delay

STA at 
0.6 V

STA at 
1.0 V

Vnom-optimization flow



Should We Rethink CAD Tools for Variable Vdd?
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Geomean CP Delay of VTR Benchmarks

• No obvious gains
from Vused-optimization

• Better to focus on circuit
optimizations
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Two-stage routing multiplexer

Background: FPGA LUT and Routing Circuitry

Tree-based 6-input LUT multiplexer



Power Modelling

• Single-input blocks: routing multiplexers, LUT input drivers, etc.
• Hspice to monitor the current drawn by the block during an input transition
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Block Load
Input
src



Power Modelling

• Single-input blocks: routing multiplexers, LUT input drivers, etc.
• Hspice to monitor the current drawn by the block during an input transition

• LUTs have multiple inputs and the current drawn depends on LUT mask
• Generate hundreds of random LUT masks, and for each mask:

• Monitor the current drawn when each of the LUT inputs toggles
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Block Load
Input
src



VTR benchmarks’ Active Power Breakdown
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VTR benchmarks’ Active Power Breakdown
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• Routing consistently 
contributes ~78% of the 
FPGA active power. 


