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Accelerator Overlays:
Spec What You Want,
Build What You Need
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FPGA Overlay Accelerator
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FPGA Overlay Accelerator

FPGA Silicon

Accelerator Overlay

Application Software



© Copyright 2019 Xilinx 

Vision Neural Networks



© Copyright 2019 Xilinx 

Image Classification

cat
traffic light
table
airplane
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ImageNet Challenge Accuracy Progress 2010—2017
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2015—2019: Faster, Smaller, More Accurate

Compute

Ac
cu

ra
cy

Graphs based on M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” ICML 2019
Single crop, single model

http://proceedings.mlr.press/v97/tan19a/tan19a.pdf
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2015—2019: Faster, Smaller, More Accurate, and Machine-Made

Compute

Ac
cu

ra
cy

Graphs based on M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” ICML 2019
Single crop, single model

Hand-designed

http://proceedings.mlr.press/v97/tan19a/tan19a.pdf
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2015—2019: Faster, Smaller, More Accurate, and Machine-Made

Compute

Ac
cu

ra
cy

Graphs based on M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” ICML 2019
Single crop, single model

Hand-designed

Network architecture search

http://proceedings.mlr.press/v97/tan19a/tan19a.pdf
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2015—2019: Faster, Smaller, More Accurate, and Machine-Made

Compute

Ac
cu

ra
cy

Graphs based on M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” ICML 2019
Single crop, single model

Hand-designed

Network architecture search

Network architecture search
with depth/width/resolution
scaling

http://proceedings.mlr.press/v97/tan19a/tan19a.pdf
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2015—2019: Faster, Smaller, More Accurate, and Machine-Made

Compute Model Size

Ac
cu

ra
cy

Graphs based on M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” ICML 2019
Single crop, single model

http://proceedings.mlr.press/v97/tan19a/tan19a.pdf
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High-Throughput Linear Layers

˃High clock rates
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Build fast (peak DSP clock rate) matrix multipliers on FPGAs
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High-Throughput Linear Layers

˃High clock rates
Build fast (peak DSP clock rate) matrix multipliers on FPGAs
Keep interconnects between memory and compute simple
Can still get 90% peak clock rate in overlay processor
Similar principle to RISC

E. Wu, X. Zhang, D. Berman, I. Cho, J. Thendean, “Compute-Efficient Neural-Network Acceleration,” FPGA 2019.

https://dl.acm.org/citation.cfm?id=3293925
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˃High clock rates
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Keep interconnects between memory and compute simple
Can still get 90% peak clock rate in overlay processor
Similar principle to RISC

˃High compute efficiency
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High-Throughput Linear Layers

˃High clock rates
Build fast (peak DSP clock rate) matrix multipliers on FPGAs
Keep interconnects between memory and compute simple
Can still get 90% peak clock rate in overlay processor
Similar principle to RISC

˃High compute efficiency
Tensors reshaped into matrices
Matrices blocked for FPGA matrix multipliers
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High-Throughput Linear Layers

˃High clock rates
Build fast (peak DSP clock rate) matrix multipliers on FPGAs
Keep interconnects between memory and compute simple
Can still get 90% peak clock rate in overlay processor
Similar principle to RISC

˃High compute efficiency
Tensors reshaped into matrices
Matrices blocked for FPGA matrix multipliers
Memory allocation, address generation, and non-linear layers key to 
success
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A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor 
Buffer

Accumulators

Auxiliary Processing

Neural-Net 
Program

For domain-specific architectures, see Hennessey and Patterson, “A New Golden Age for Computer Architecture, ” Communications of the ACM, February 2019, Vol. 62 No. 2, pp 48-60.

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext?mobile=false
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A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor 
Buffer

Accumulators

Auxiliary Processing

Neural-Net 
ProgramSquint and every architecture 

looks the same?
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A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor 
Buffer

Accumulators

Auxiliary Processing

Neural-Net 
Program

Keep these networks 
simple
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A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor 
Buffer

Accumulators

Auxiliary Processing

Neural-Net 
ProgramCISC instructions are back. 

Thank you, dataflow graphs.
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An Example Command

𝑋𝑋 = max 𝐴𝐴𝐴𝐴 + 𝑐𝑐𝟏𝟏𝑇𝑇 , 0

X = relu(add(matmul(A, B), broadcast(c))

No explicit nested loops.
Dimensions in tensors.
One tensor memory roundtrip.
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A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor 
Buffer

Accumulators

Auxiliary Processing

Neural-Net 
ProgramUse small PEs and 

DSP cascades.
Go for near-Fmax!
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MxV: Don’t Leave Performance on the Table
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References from FPL17

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8056794


© Copyright 2019 Xilinx 
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Do

Don’t

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8056794
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Compute-Efficient Neural Processor Overlay [FPGA 2019]
˃ Platform: VCU1525 board with VU9P-2 FPGA

˃ Case Study: GoogLeNet v1 Inference
3 parallel GoogLeNets with independent weights
Each network runs with batch size 1
Aggregate 3046 images/sec, 3.3 ms latency

˃ Compute
DSP supertile arrays running at 720 MHz
56% DSP48 tiles consumed, DSP cycles 95% utilized
Per-tensor block floating-point, 8-/16-bit significands

˃ Memory
No external DRAM on accelerator card used
All tensors stored in UltraRAM & BRAM
1/2 DSP clock rate to simplify timing convergence

VU9P Layout
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A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor 
Buffer

Accumulators

Auxiliary Processing

Neural-Net 
Program

Use low-precision here.
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Uniform Quantization
𝑥𝑥 Original dist.

(e.g. in fp32)
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Uniform Quantization

Scale

𝑥𝑥

𝑥𝑥
𝑠𝑠

Original dist.

Threshold scalar 
to be learned

S. Jain et al., “Trained Uniform Quantization for Accurate and Efficient Neural Network Inference on Fixed-Point Hardware,” http://arxiv.org/abs/1903.08066

http://arxiv.org/abs/1903.08066
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Uniform Quantization

Scale

Round

𝑥𝑥

𝑥𝑥
𝑠𝑠

𝑥𝑥
𝑠𝑠

Original dist.

Scaled FP32 
numbers 
rounded to 
integers
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Uniform Quantization

Scale

Round

𝑥𝑥

𝑥𝑥
𝑠𝑠

𝑥𝑥
𝑠𝑠

Clip

Original dist.

−𝑍𝑍 𝑄𝑄 − 𝑍𝑍 − 10

clip 𝑥𝑥
𝑠𝑠

,−𝑍𝑍,𝑄𝑄 − 𝑍𝑍 − 1
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Uniform Quantization

Scale

Round

𝑥𝑥

𝑥𝑥
𝑠𝑠

𝑥𝑥
𝑠𝑠

Clipclip 𝑥𝑥
𝑠𝑠

,−𝑍𝑍,𝑄𝑄 − 𝑍𝑍 − 1

Original dist.

−𝑍𝑍 𝑄𝑄 − 𝑍𝑍 − 10
Exact zeroZero point
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Uniform Quantization

Scale

Round

𝑥𝑥

𝑥𝑥
𝑠𝑠

𝑥𝑥
𝑠𝑠

Clip

Original dist.

Zero point Bins −𝑍𝑍 𝑄𝑄 − 𝑍𝑍 − 10
Exact zero

clip 𝑥𝑥
𝑠𝑠

,−𝑍𝑍,𝑄𝑄 − 𝑍𝑍 − 1
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Uniform Quantization

Scale

Round

𝑥𝑥

𝑥𝑥
𝑠𝑠

𝑥𝑥
𝑠𝑠

Clip

Original dist.

−𝑍𝑍 𝑄𝑄 − 𝑍𝑍 − 10

Range can be asymmetric.
This example favors precision 
over range.
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INT-to-Float

−𝑍𝑍 𝑄𝑄 − 𝑍𝑍 − 10

𝑞𝑞 = clip 𝑥𝑥
𝑠𝑠

,−𝑍𝑍,𝑄𝑄 − 𝑍𝑍 − 1

Numbers that enter 
integer matrix 
multiplier hardware
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INT-to-Float

�𝑥𝑥 = 𝑠𝑠𝑞𝑞
Floating-point numbers with 
quantization noise for 
simulation using floating-point 
hardware

−𝑍𝑍 𝑄𝑄 − 𝑍𝑍 − 10

𝑞𝑞 = clip 𝑥𝑥
𝑠𝑠

,−𝑍𝑍,𝑄𝑄 − 𝑍𝑍 − 1

Numbers that enter 
integer matrix 
multiplier hardware
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Which int8?

Example Zero Point 𝒁𝒁 Bins 𝑸𝑸 Integer Values
int8 128 256 −128, 127

R. Krishnamoorthi et al., “Quantizing deep convolutional networks for efficient inference: A whitepaper,” https://arxiv.org/abs/1806.08342

https://arxiv.org/abs/1806.08342
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Which int8?

Example Zero Point 𝒁𝒁 Bins 𝑸𝑸 Integer Values
int8 128 256 −128, 127
Symmetric int8 127 255 −127, 127

R. Krishnamoorthi et al., “Quantizing deep convolutional networks for efficient inference: A whitepaper,” https://arxiv.org/abs/1806.08342

https://arxiv.org/abs/1806.08342
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Which int8?

Example Zero Point 𝒁𝒁 Bins 𝑸𝑸 Integer Values
int8 128 256 −128, 127
Symmetric int8 127 255 −127, 127
uint8 0 256 0,255

R. Krishnamoorthi et al., “Quantizing deep convolutional networks for efficient inference: A whitepaper,” https://arxiv.org/abs/1806.08342

https://arxiv.org/abs/1806.08342
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In general… 

Zero Point 𝒁𝒁 Bins 𝑸𝑸 Integer Values
𝟐𝟐𝒃𝒃 levels with zero 
point 𝒁𝒁

𝑍𝑍 ∈ 0,2𝑏𝑏 − 1 2b −𝑍𝑍, 2b − 1 − 𝑍𝑍

R. Krishnamoorthi et al., “Quantizing deep convolutional networks for efficient inference: A whitepaper,” https://arxiv.org/abs/1806.08342

https://arxiv.org/abs/1806.08342
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A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor 
Buffer

Accumulators

Auxiliary Processing

Neural-Net 
ProgramUse in-package memory

SRAM: URAM + BRAM
DRAM: HBM
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UltraScale+™ Memory 

Capacity

Ba
nd

w
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UltraScale+™ Memory 

Capacity

Ba
nd

w
id

th

New in UltraScale+™
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Use FPGA URAM for Capacity and Bandwidth
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Holds three copies of GoogLeNet 
8-bit weights and activations
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A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor 
Buffer

Accumulators

Auxiliary Processing

Neural-Net 
ProgramReduction in DSP mult-add cascade

Broadcast in fabric pipeline
Been there since Day One of DSP blocks.
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A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor 
Buffer

Accumulators

Auxiliary Processing

Neural-Net 
ProgramKey to compute efficiency:

Tensor-to-matrix memory allocation 
and address generation
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A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor 
Buffer

Accumulators

Auxiliary Processing

Neural-Net 
ProgramMap channels to MxV lanes to 

simplify address generation.



© Copyright 2019 Xilinx 

2D Convolution: Tensor View

Input Channel 0

Input Channel 1

Input Channel 2
Input Tensor 𝒳𝒳 ∈ ℝ𝐻𝐻1×𝑊𝑊1×𝐶𝐶𝑖𝑖𝑖𝑖

𝐻𝐻1

𝑊𝑊1

𝐶𝐶𝑖𝑖𝑖𝑖

𝐻𝐻1

𝑊𝑊1
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2D Convolution: Tensor View

Input Channel 0

Input Channel 1

Input Channel 2

Output channel 0 Output channel 1 Output channel 2 Output channel 3

Input Tensor 𝒳𝒳 ∈ ℝ𝐻𝐻1×𝑊𝑊1×𝐶𝐶𝑖𝑖𝑖𝑖

Output Tensor 𝒴𝒴 ∈ ℝ𝐻𝐻2×𝑊𝑊2×𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

𝐻𝐻1

𝑊𝑊1

𝐻𝐻2

𝐶𝐶𝑖𝑖𝑖𝑖

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜
𝑊𝑊2
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2D Convolution: Tensor View

˃ Although input and output tensors have three axes, 

convolution is 2D, not 3D.

˃ There’s a 2D convolution filter mask for every 

input-output channel pair

(3 × 4 = 12 in this example).

Input Channel 0

Input Channel 1

Input Channel 2

Output channel 0 Output channel 1 Output channel 2 Output channel 3

Input Tensor 𝒳𝒳 ∈ ℝ𝐻𝐻1×𝑊𝑊1×𝐶𝐶𝑖𝑖𝑖𝑖

Output Tensor 𝒴𝒴 ∈ ℝ𝐻𝐻2×𝑊𝑊2×𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

𝐻𝐻1

𝑊𝑊1

𝐻𝐻2

𝐶𝐶𝑖𝑖𝑖𝑖

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜
𝑊𝑊2
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2D Convolution: Tensor View

Input Channel 0

Input Channel 1

Input Channel 2

Output filter 0 Output filter 1 Output filter 2 Output filter 3

Output channel 0 Output channel 1 Output channel 2 Output channel 3

Input Tensor 𝒳𝒳 ∈ ℝ𝐻𝐻1×𝑊𝑊1×𝐶𝐶𝑖𝑖𝑖𝑖

Output Tensor 𝒴𝒴 ∈ ℝ𝐻𝐻2×𝑊𝑊2×𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

Filter Weight Tensor 𝒲𝒲 ∈ ℝ𝐹𝐹𝑦𝑦×𝐹𝐹𝑥𝑥×𝐶𝐶𝑖𝑖𝑖𝑖×𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

𝐻𝐻1

𝑊𝑊1

𝐹𝐹𝑦𝑦
𝐹𝐹𝑥𝑥

𝑊𝑊2

𝐻𝐻2

𝐶𝐶𝑖𝑖𝑖𝑖

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜
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2D Convolution: Tensor View

Input Channel 0

Input Channel 1

Input Channel 2

Output filter 0 Output filter 1 Output filter 2 Output filter 3

Output channel 0 Output channel 1 Output channel 2 Output channel 3

Input Tensor 𝒳𝒳 ∈ ℝ𝐻𝐻1×𝑊𝑊1×𝐶𝐶𝑖𝑖𝑖𝑖

Output Tensor 𝒴𝒴 ∈ ℝ𝐻𝐻2×𝑊𝑊2×𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

Filter Weight Tensor 𝒲𝒲 ∈ ℝ𝐹𝐹𝑦𝑦×𝐹𝐹𝑥𝑥×𝐶𝐶𝑖𝑖𝑖𝑖×𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

𝐻𝐻1

𝑊𝑊1

𝐹𝐹𝑦𝑦
𝐹𝐹𝑥𝑥

𝑊𝑊2

𝐻𝐻2

𝐶𝐶𝑖𝑖𝑖𝑖

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

MxV Output Lanes
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2D Convolution: From Tensor to Flat View

Input Image
In

pu
t C

ha
nn

el
s

Parallel convolution sliding windows, 
one per input channel
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2D Convolution: Flat View

Input Image
In

pu
t C

ha
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s

Parallel convolution sliding windows, 
one per input channel
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2D Convolution: Flat View

Input Image
In

pu
t C

ha
nn

el
s

Parallel convolution sliding windows, 
one per input channel
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2D Convolution: Flat Silicon View

Input Image
In

pu
t C

ha
nn

el
s

× × × ×

× × × ×

× × × ×

• Input channel broadcast
• Per-channel element-wise 

multiplication with filter weights
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2D Convolution: Flat Silicon View

Input Image

𝑑𝑑2 = 1 𝑑𝑑2 = 2 𝑑𝑑2 = 3 𝑑𝑑2 = 4

In
pu

t C
ha

nn
el

s

+ + + +× × × ×

× × × ×

Σ Σ Σ Σ× × × ×

Reduction per output channel

Accumulates
3 × 3 × 3 = 27 products
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Interpreting Weights (Sort of)

Input Image

𝑑𝑑2 = 1 𝑑𝑑2 = 2 𝑑𝑑2 = 3 𝑑𝑑2 = 4

In
pu

t C
ha

nn
el

s

+ + + +× × × ×

× × × ×

Σ Σ Σ Σ× × × ×

Looking for 
green patches

Looking for edges
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N = 28 × 28 = 784

M
 =

 1
92

O
ut

pu
t c

ha
nn

el
s

Elements per Output Channel

Reshaping Tensors to Matrices

28 × 28

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192

3-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑯𝑯𝟐𝟐×𝑾𝑾𝟐𝟐×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

Output Matrix
𝒀𝒀 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑯𝑯𝟐𝟐𝑾𝑾𝟐𝟐
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N = 28 × 28 = 784

M
 =

 1
92

O
ut

pu
t c

ha
nn

el
s

Elements per Output Channel

Reshaping Tensors to Matrices

28 × 28

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192

3-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑯𝑯𝟐𝟐×𝑾𝑾𝟐𝟐×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

Output Matrix
𝒀𝒀 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑯𝑯𝟐𝟐𝑾𝑾𝟐𝟐
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N = 28 × 28 = 784

M
 =

 1
92

O
ut

pu
t c

ha
nn

el
s

Elements per Output Channel Input Channels × Weights per Filter

K = 3 × 3 × 128 = 1152

M
 =

 1
92

Reshaping Tensors to Matrices

28 × 28

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192
3 × 3

3 × 3

3 × 33 × 3

3 × 3
3 × 3

3 × 33 × 3

𝐶𝐶𝑖𝑖𝑖𝑖 = 128

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192

3-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑯𝑯𝟐𝟐×𝑾𝑾𝟐𝟐×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

4-Mode Weight Tensor
𝒲𝒲 ∈ ℝ𝑭𝑭𝒚𝒚×𝑭𝑭𝒙𝒙×𝑪𝑪𝒊𝒊𝒊𝒊×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

Output Matrix
𝒀𝒀 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑯𝑯𝟐𝟐𝑾𝑾𝟐𝟐

Weight Matrix
𝑾𝑾 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑭𝑭𝒚𝒚𝑭𝑭𝒙𝒙𝑪𝑪𝒊𝒊𝒊𝒊
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N = 28 × 28 = 784

M
 =

 1
92

O
ut

pu
t c

ha
nn

el
s

Elements per Output Channel Input Channels × Weights per Filter

K = 3 × 3 × 128 = 1152

M
 =

 1
92

Reshaping Tensors to Matrices

28 × 28

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192
3 × 3

3 × 3

3 × 33 × 3

3 × 3
3 × 3

3 × 33 × 3

𝐶𝐶𝑖𝑖𝑖𝑖 = 128

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192

3-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑯𝑯𝟐𝟐×𝑾𝑾𝟐𝟐×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

4-Mode Weight Tensor
𝒲𝒲 ∈ ℝ𝑭𝑭𝒚𝒚×𝑭𝑭𝒙𝒙×𝑪𝑪𝒊𝒊𝒊𝒊×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

Output Matrix
𝒀𝒀 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑯𝑯𝟐𝟐𝑾𝑾𝟐𝟐

Weight Matrix
𝑾𝑾 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑭𝑭𝒚𝒚𝑭𝑭𝒙𝒙𝑪𝑪𝒊𝒊𝒊𝒊
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Reshaping Tensors to Matrices for Matrix Multipliers

N = 28 × 28 = 784

K 
= 

11
52

N = 28 × 28 = 784

M
 =

 1
92

O
ut

pu
t c

ha
nn

el
s

Elements per Output Channel Input Channels × Weights per Filter

K = 3 × 3 × 128 = 1152

=
M

 =
 1

92

28 × 28

𝐶𝐶𝑖𝑖𝑖𝑖 = 128

28 × 28

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192
3 × 3

3 × 3

3 × 33 × 3

3 × 3
3 × 3

3 × 33 × 3
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192

3-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑯𝑯𝟐𝟐×𝑾𝑾𝟐𝟐×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

4-Mode Weight Tensor
𝒲𝒲 ∈ ℝ𝑭𝑭𝒚𝒚×𝑭𝑭𝒙𝒙×𝑪𝑪𝒊𝒊𝒊𝒊×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

3-Mode Input Tensor
𝒳𝒳 ∈ ℝ𝑯𝑯𝟏𝟏×𝑾𝑾𝟏𝟏×𝑪𝑪𝒊𝒊𝒊𝒊

Output Matrix
𝒀𝒀 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑯𝑯𝟐𝟐𝑾𝑾𝟐𝟐

Weight Matrix
𝑾𝑾 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑭𝑭𝒚𝒚𝑭𝑭𝒙𝒙𝑪𝑪𝒊𝒊𝒊𝒊

Input Matrix
𝑿𝑿 ∈ ℝ𝑭𝑭𝒚𝒚𝑭𝑭𝒙𝒙𝑪𝑪𝒊𝒊𝒊𝒊×𝑯𝑯𝟐𝟐𝑾𝑾𝟐𝟐

𝐶𝐶𝑖𝑖𝑖𝑖 = 128
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Reshaping Tensors to Matrices for Matrix Multipliers

N = 28 × 28 = 784

K 
= 

11
52

N = 28 × 28 = 784

M
 =

 1
92

O
ut

pu
t c

ha
nn

el
s

Elements per Output Channel Input Channels × Weights per Filter

K = 3 × 3 × 128 = 1152

=
M

 =
 1

92

28 × 28

𝐶𝐶𝑖𝑖𝑖𝑖 = 128

28 × 28

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192
3 × 3

3 × 3

3 × 33 × 3

3 × 3
3 × 3

3 × 33 × 3
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192

3-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑯𝑯𝟐𝟐×𝑾𝑾𝟐𝟐×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

4-Mode Weight Tensor
𝒲𝒲 ∈ ℝ𝑭𝑭𝒚𝒚×𝑭𝑭𝒙𝒙×𝑪𝑪𝒊𝒊𝒊𝒊×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

3-Mode Input Tensor
𝒳𝒳 ∈ ℝ𝑯𝑯𝟏𝟏×𝑾𝑾𝟏𝟏×𝑪𝑪𝒊𝒊𝒊𝒊

Output Matrix
𝒀𝒀 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑯𝑯𝟐𝟐𝑾𝑾𝟐𝟐

Weight Matrix
𝑾𝑾 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑭𝑭𝒚𝒚𝑭𝑭𝒙𝒙𝑪𝑪𝒊𝒊𝒊𝒊

Input Matrix
𝑿𝑿 ∈ ℝ𝑭𝑭𝒚𝒚𝑭𝑭𝒙𝒙𝑪𝑪𝒊𝒊𝒊𝒊×𝑯𝑯𝟐𝟐𝑾𝑾𝟐𝟐

𝐶𝐶𝑖𝑖𝑖𝑖 = 128
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Applies to Any-Dimensional Convolution
Conv1D: Speech, biomedical data classification, anomaly detection
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Applies to Any-Dimensional Convolution

N-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑶𝑶𝟏𝟏×⋯×𝑶𝑶𝑵𝑵×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

(N+1)-Mode Weight Tensor
𝒲𝒲 ∈ ℝ𝑭𝑭𝟏𝟏×⋯×𝑭𝑭𝑵𝑵×𝑪𝑪𝒊𝒊𝒊𝒊×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

N-Mode Input Tensor
𝒳𝒳 ∈ ℝ𝑰𝑰𝟏𝟏×⋯×𝑰𝑰𝑵𝑵×𝑪𝑪𝒊𝒊𝒊𝒊

𝒴𝒴 = 𝒲𝒲𝒳𝒳

Conv1D: Speech, biomedical data classification, anomaly detection
Conv2D: Image classification, object detection
Conv3D: Medical imaging, video analytics
Conv4D: Light-field imaging for material recognition
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Applies to Any-Dimensional Convolution

N-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑶𝑶𝟏𝟏×⋯×𝑶𝑶𝑵𝑵×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

(N+1)-Mode Weight Tensor
𝒲𝒲 ∈ ℝ𝑭𝑭𝟏𝟏×⋯×𝑭𝑭𝑵𝑵×𝑪𝑪𝒊𝒊𝒊𝒊×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

N-Mode Input Tensor
𝒳𝒳 ∈ ℝ𝑰𝑰𝟏𝟏×⋯×𝑰𝑰𝑵𝑵×𝑪𝑪𝒊𝒊𝒊𝒊

𝒴𝒴 = 𝒲𝒲𝒳𝒳

Output Matrix
𝒀𝒀 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐× 𝑶𝑶𝟏𝟏⋯𝑶𝑶𝑵𝑵

Weight Matrix
𝑾𝑾 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐× 𝑭𝑭𝟏𝟏⋯𝑭𝑭𝑵𝑵 𝑪𝑪𝒊𝒊𝒊𝒊

Input Matrix
𝑿𝑿 ∈ ℝ 𝑭𝑭𝟏𝟏⋯𝑭𝑭𝑵𝑵 𝑪𝑪𝒊𝒊𝒊𝒊× 𝑰𝑰𝟏𝟏⋯𝑰𝑰𝑵𝑵

𝒀𝒀 = 𝑾𝑾𝑿𝑿

Conv1D: Speech, biomedical data classification, anomaly detection
Conv2D: Image classification, object detection
Conv3D: Medical imaging, video analytics
Conv4D: Light-field imaging for material recognition
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Applies to Any-Dimensional Convolution

N-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑶𝑶𝟏𝟏×⋯×𝑶𝑶𝑵𝑵×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

(N+1)-Mode Weight Tensor
𝒲𝒲 ∈ ℝ𝑭𝑭𝟏𝟏×⋯×𝑭𝑭𝑵𝑵×𝑪𝑪𝒊𝒊𝒊𝒊×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

N-Mode Input Tensor
𝒳𝒳 ∈ ℝ𝑰𝑰𝟏𝟏×⋯×𝑰𝑰𝑵𝑵×𝑪𝑪𝒊𝒊𝒊𝒊

𝒴𝒴 = 𝒲𝒲𝒳𝒳

Output Matrix
𝒀𝒀 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐× 𝑶𝑶𝟏𝟏⋯𝑶𝑶𝑵𝑵

Weight Matrix
𝑾𝑾 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐× 𝑭𝑭𝟏𝟏⋯𝑭𝑭𝑵𝑵 𝑪𝑪𝒊𝒊𝒊𝒊

Input Matrix
𝑿𝑿 ∈ ℝ 𝑭𝑭𝟏𝟏⋯𝑭𝑭𝑵𝑵 𝑪𝑪𝒊𝒊𝒊𝒊× 𝑰𝑰𝟏𝟏⋯𝑰𝑰𝑵𝑵

𝒀𝒀 = 𝑾𝑾𝑿𝑿

Conv1D: Speech, biomedical data classification, anomaly detection
Conv2D: Image classification, object detection
Conv3D: Medical imaging, video analytics
Conv4D: Light-field imaging for material recognition

Basically, parenthesize axes to 
make both hardware and 
software happy
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Decide What You Need to Optimize in Hardware

˃Convolution parameters and flavors
Padding, strides, number of axes
Dilated, transposed, depthwise-separable,… 
See Session M2, FPL 19.

˃Winograd algorithm: patch size vs. speed-up vs. numerical stability

˃Balance ease of use vs. energy efficiency using mixed data types

˃Hardware-software co-design
Good data movement instructions keep compute fed and software stable
FPGAs provides adaptability, especially for non-linear layers



© Copyright 2019 Xilinx 

Natural-Language Processing
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Reading Comprehension (SQuAD Dataset)

Tesla theorized that the application of electricity to the brain enhanced 

intelligence. In 1912, he crafted "a plan to make dull students bright by 

saturating them unconsciously with electricity," wiring the walls of a 

schoolroom and, "saturating [the schoolroom] with infinitesimal electric 

waves vibrating at high frequency. The whole room will thus, Mr. Tesla 

claims, be converted into a health-giving and stimulating electromagnetic 

field or 'bath.'" The plan was, at least provisionally approved by then 

superintendent of New York City schools, William H. Maxwell.

Source: SQuAD

https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/Nikola_Tesla.html
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Natural Language Processing: Reading Comprehension

Source: SQuAD Website
Source: SQuAD

https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/Nikola_Tesla.html?model=r-net+%20(ensemble)%20(Microsoft%20Research%20Asia)
https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/Nikola_Tesla.html
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Stanford Question and Answering Dataset (SQuAD) 1.1
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SQuAD 2.0 (with Unanswerable Questions)
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Convolution vs. Attention
Weights fixed after training
Filter extent limited 

Weights computed on-the-fly
Large extent (context)

D. Bahdanau, K. Cho, and Y. Bengio “Neural Machine Translation by Jointly Learning to Align and Translate,” ICLR 2015

https://arxiv.org/pdf/1409.0473.pdf
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Self-Attention

You shall know a word by the company it keeps.
John R. Firth, 1957

2.3%
2.0%
9.4%
0.9%

39.9%
9.4%
1.8%
7.2%
0.8%

13.2%
7.6%
5.4%

Attention display created with Google Tensor2Tensor using the Transformer Base model.

https://github.com/tensorflow/tensor2tensor
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Attention Mechanism

Associative Array or Content-Addressable Memory

Apple Red

Grass Green

Sky Blue

Key Value
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Attention Mechanism

What does this query match?

Apple Red

Grass Green

Sky Blue

Key Value

Grass

Query
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Attention Mechanism

Exact match between query and one of the keys

Apple Red

Grass Green

Sky Blue

Key Value

Grass

Query
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Attention Mechanism

Returns associated value. Each query is a one-hot vector.

Grass Green

Key Value

Grass

Query
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Attention in Neural Networks
Attention: Soft Associative Array

[235, 28, 35]

[30, 100, 14]

[74, 126, 207]

Key Value

[-0.2, 1.1, -0.9]

[0.4, 0.7, -1.1]

[-0.1, -1.2, 1.1]
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Attention in Neural Networks

[-0.2, 1.1, -0.9] [235, 28, 35]

[0.4, 0.7, -1.1] [30, 100, 14]

[-0.1, -1.2, 1.1] [74, 126, 207]

Key Value

What does this query match?

[-0.2, 1.1, -0.9]

Query
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Attention in Neural Networks

[235, 28, 35]

[30, 100, 14]

[74, 126, 207]

Key Value

Can we “soft-match?” Dot product measures similarity.

Query
Dot 

Product

2.1

1.7

-2.3

[-0.2, 1.1, -0.9]

[0.4, 0.7, -1.1]

[-0.1, -1.2, 1.1]

[-0.2, 1.1, -0.9]
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Attention in Neural Networks

[235, 28, 35]

[30, 100, 14]

[74, 126, 207]

Key Value

Exponentiate

Query Exp

7.8

5.4

0.1

[-0.2, 1.1, -0.9]

[0.4, 0.7, -1.1]

[-0.1, -1.2, 1.1]

[-0.2, 1.1, -0.9]
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Attention in Neural Networks

[235, 28, 35]

[30, 100, 14]

[74, 126, 207]

Key Value

Normalize. Softmax!

Query Weight

58.9%

40.3%

0.76%

[-0.2, 1.1, -0.9]

[0.4, 0.7, -1.1]

[-0.1, -1.2, 1.1]

[-0.2, 1.1, -0.9]
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Attention in Neural Networks

[235, 28, 35]

[30, 100, 14]

[74, 126, 207]

Key Value

Weighted sum of values:

Query Weight

[151, 58, 28]

58.9%

40.3%

0.76%

[-0.2, 1.1, -0.9]

[0.4, 0.7, -1.1]

[-0.1, -1.2, 1.1]

[-0.2, 1.1, -0.9]
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Attention in Neural Networks

In matrix form for multiple queries in parallel hardware:

VKTQ

Attention (Q, K, V) = softmax( )

Parallel Queries Key-Value Table

Need more softmax than typical vision neural networks.
Can add in ACAP/FPGA.
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Word Embeddings
Words represented as vectors (>500 components)
“You shall know a word by the company it keeps.”

Word analogy
is : was :: ? : were

is

was

were
C. Allen and T. Hospedales, “Analogies Explained: Towards Understanding Word Embeddings,” ICML 2019

http://proceedings.mlr.press/v97/allen19a/allen19a.pdf
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Word Embeddings

Word analogy
is : was :: ? : were

is

was

were

is - was

C. Allen and T. Hospedales, “Analogies Explained: Towards Understanding Word Embeddings,” ICML 2019

http://proceedings.mlr.press/v97/allen19a/allen19a.pdf
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Word Embeddings

Word analogy
is : was :: ? : were

is

was

were

is – was + were

is - was

C. Allen and T. Hospedales, “Analogies Explained: Towards Understanding Word Embeddings,” ICML 2019

http://proceedings.mlr.press/v97/allen19a/allen19a.pdf
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Word Embeddings

Word analogy
is : was :: are : were

is

was

were

is – was + were
≈are

C. Allen and T. Hospedales, “Analogies Explained: Towards Understanding Word Embeddings,” ICML 2019

http://proceedings.mlr.press/v97/allen19a/allen19a.pdf
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Word Embeddings

Word analogy
is : was :: are : were

Embedding analogy
is – was ≈ are – were

is

was

were

is – was + were
≈are

C. Allen and T. Hospedales, “Analogies Explained: Towards Understanding Word Embeddings,” ICML 2019

http://proceedings.mlr.press/v97/allen19a/allen19a.pdf
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Word Embeddings

Word analogy
is : was :: are : were

Embedding analogy
is – was ≈ are – were

is

was

were

is – was + were
≈are

C. Allen and T. Hospedales, “Analogies Explained: Towards Understanding Word Embeddings,” ICML 2019

Embeddings from unsupervised training

http://proceedings.mlr.press/v97/allen19a/allen19a.pdf
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Model Sizes

˃Embedding storage in Translation Networks
Transformer Base: ~32K × 512 fp32
OpenAI GPT-2: ~50K × 1600 fp32 
Above examples considered small
Can convert fp32 to 8-bit or 16-bit data types

˃Model sizes (Number of parameters)
Transformer Base: 61M
Open AI GPT-2: 1.6B

˃ Instruction set and tensor SRAM tuned for random & burst HBM

˃Beam search
Transformer: Vaswani et al., “Attention Is All You Need,” NIPS 2017
OpenAI GPT-2: Radford et al., “Language Models are Unsupervised Multitask Learners,” OpenAI 2019
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
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Combining Vision and Language
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From Image Classification to Object Detection
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From Reading Comprehension and Object Detection to
Visual Reasoning

Is the bowl to the right of the green apple?

What type of fruit in the image is round?

Source: D. Hudson and C. Manning, “GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering,” arXiv 1902.09506

https://arxiv.org/pdf/1902.09506.pdf
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Era of Easy Scaling Over

Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018

Moore’s Law
Transistor improvement slows

Amdahl’s Law
Multicore not enough

Dennard Scaling
Power density rises
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Built to Last

˃Model commands after NN framework function calls
Linear layers: matrix multiplication & convolution
Attention is powerful and good for parallelism
Beam search in NLP: Amdahl’s Law
Activation functions, N-D pooling, layer normalization, NMS, LSTM, RNN, GRU, …

˃Compute is easy. Memory is hard and is key to a adaptable design.

˃Neural networks do merge, e.g. captioning, visual reasoning

˃ML moves fast. Plan instruction superset upfront for adaptability.

˃ Implement what you need today. Reconfigure HW to adapt to changes.
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Thank you



Adaptable.
Intelligent.
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