Accelerator Overlays: Spec What You Want, Build What You Need

Ephrem Wu
FPL 2019
§. XILINX.

FPGA Overlay Accelerator

FPGA Silicon

FPGA Overlay Accelerator

FPGA Overlay Accelerator

Application Software

Vision Neural Networks

₹. XILINX.

Image Classification

ImageNet Challenge Accuracy Progress 2010-2017

2015 - 2019: Faster, Smaller, More Accurate

Compute

Graphs based on M. Tan and Q. V. Le, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks," ICML 2019
Single crop, single model

2015-2019: Faster, Smaller, More Accurate, and Machine-Made

Hand-designed

Compute

Graphs based on M. Tan and Q. V. Le, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks," ICML 2019
Single crop, single model

2015-2019: Faster, Smaller, More Accurate, and Machine-Made

Compute

Graphs based on M. Tan and Q. V. Le, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks," ICML 2019
Single crop, single model

2015-2019: Faster, Smaller, More Accurate, and Machine-Made

Compute

2015-2019: Faster, Smaller, More Accurate, and Machine-Made

Compute
Model Size

Graphs based on M. Tan and Q. V. Le, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks," ICML 2019
Single crop, single model

High-Throughput Linear Layers

>High clock rates

High-Throughput Linear Layers

>High clock rates
>> Build fast (peak DSP clock rate) matrix multipliers on FPGAs

High-Throughput Linear Layers

>High clock rates
>> Build fast (peak DSP clock rate) matrix multipliers on FPGAs
>> Keep interconnects between memory and compute simple

High-Throughput Linear Layers

>High clock rates
>> Build fast (peak DSP clock rate) matrix multipliers on FPGAs
>> Keep interconnects between memory and compute simple
>> Can still get 90\% peak clock rate in overlay processor
>> Similar principle to RISC

High-Throughput Linear Layers

>High clock rates
>> Build fast (peak DSP clock rate) matrix multipliers on FPGAs
>> Keep interconnects between memory and compute simple
>Can still get 90\% peak clock rate in overlay processor
>> Similar principle to RISC
>High compute efficiency

High-Throughput Linear Layers

> High clock rates
>> Build fast (peak DSP clock rate) matrix multipliers on FPGAs
>> Keep interconnects between memory and compute simple
>> Can still get 90\% peak clock rate in overlay processor
>S Similar principle to RISC
>High compute efficiency
>> Tensors reshaped into matrices
>>Matrices blocked for FPGA matrix multipliers

High-Throughput Linear Layers

> High clock rates
>>Build fast (peak DSP clock rate) matrix multipliers on FPGAs
>> Keep interconnects between memory and compute simple
>Can still get 90\% peak clock rate in overlay processor
>> Similar principle to RISC
>High compute efficiency
>> Tensors reshaped into matrices
>>Matrices blocked for FPGA matrix multipliers
>> Memory allocation, address generation, and non-linear layers key to success

A Domain-Specific Architecture for Neural Networks

A Domain-Specific Architecture for Neural Networks

looks the same?

A Domain-Specific Architecture for Neural Networks

A Domain-Specific Architecture for Neural Networks

Thank you, dataflow graphs.

An Example Command

$$
X=\max \left(A B+c 1^{T}, 0\right)
$$

X = relu(add(matmul(A, B), broadcast(c))

No explicit nested loops.
Dimensions in tensors.
One tensor memory roundtrip.

A Domain-Specific Architecture for Neural Networks

MxV: Don't Leave Performance on the Table

MxV: Don't Leave Performance on the Table

Compute-Efficient Neural Processor Overlay [FPGA 2019]

> Platform: VCU1525 board with VU9P-2 FPGA
> Case Study: GoogLeNet v1 Inference
>> 3 parallel GoogLeNets with independent weights
>> Each network runs with batch size 1
>> Aggregate 3046 images/sec, 3.3 ms latency
> Compute
>> DSP supertile arrays running at 720 MHz
>> 56\% DSP48 tiles consumed, DSP cycles 95\% utilized
>> Per-tensor block floating-point, 8-/16-bit significands
$>$ Memory
>> No external DRAM on accelerator card used
>> All tensors stored in UltraRAM \& BRAM
>> 1/2 DSP clock rate to simplify timing convergence

A Domain-Specific Architecture for Neural Networks

Uniform Quantization

Original dist. (e.g. in fp32)

Uniform Quantization

x

Threshold scalar x to be learned

Original dist.

Scale

Uniform Quantization
x

Original dist.

Scale

Round

Uniform Quantization
x

$\left.\operatorname{clip}\left(\frac{z}{s}\right],-Z, Q-Z-1\right)$

Original dist.

Scale

Round

Clip
§. XILINX.

Uniform Quantization
x
$\frac{x}{s}$
$\left\lfloor\frac{x}{s}\right\rceil$
$\left.\operatorname{clip}\left(\left\lvert\, \frac{x}{s}\right.\right\rceil,-Z, Q-Z-1\right)$
Zero point

Uniform Quantization
x
$\frac{x}{S}$
$\left\lfloor\frac{x}{s}\right\rceil$
$\operatorname{clip}\left(\left\lfloor\frac{x}{s}\right\rceil,-Z, Q-Z-1\right)$
Zero point
Bins

Original dist.

Scale

Round

Clip

Exact zero

Uniform Quantization

x
 $$
\left\lfloor\frac{x}{s}\right\rceil
$$

Original dist.

Scale

Round

Clip

§ XILINX.

INT-to-Float

$$
q=\operatorname{clip}\left(\left\lfloor\frac{x}{s}\right\rfloor,-Z, Q-Z-1\right)
$$

Numbers that enter integer matrix multiplier hardware

INT-to-Float

$$
q=\operatorname{clip}\left(\left\lfloor\frac{x}{s}\right\rfloor,-Z, Q-Z-1\right)
$$

Which int8?

Example	Zero Point Z	Bins Q	Integer Values
int8	128	256	$[-128,127]$

Which int8?

Example	Zero Point Z	Bins Q	Integer Values
int8	128	256	$[-128,127]$
Symmetric int8	127	255	$[-127,127]$

Which int8?

Example	Zero Point Z	Bins Q	Integer Values
int8	128	256	$[-128,127]$
Symmetric int8	127	255	$[-127,127]$
uint8	0	256	$[0,255]$

In general...

	Zero Point Z	Bins \mathbf{Q}	Integer Values
$\mathbf{2}^{b}$ Ievels with zero point Z	$Z \in\left[0,2^{b}-1\right]$	$2^{\text {b }}$	$\left[-Z, 2^{\text {b }}-1-Z\right]$

A Domain-Specific Architecture for Neural Networks

UltraScale+ $+^{\text {TM }}$ Memory

Distributed RAM
(bits to kilobits)

UltraScale+TM Memory

External DDR DRAM
(10s of gigabits)
Capacity
天 XILINX

Use FPGA URAM for Capacity and Bandwidth

A Domain-Specific Architecture for Neural Networks

A Domain-Specific Architecture for Neural Networks

 and address generation

A Domain-Specific Architecture for Neural Networks

2D Convolution: Tensor View

2D Convolution: Tensor View

Output Tensor $\mathcal{Y} \in \mathbb{R}^{H_{2} \times W_{2} \times C_{\text {out }}}$
Output channel 0 Output channel 1 Output channel 2 Output channel 3

Input Tensor $\mathcal{X} \in \mathbb{R}^{H_{1} \times W_{1} \times C_{\text {in }}}$

2D Convolution: Tensor View

Output Tensor $y \in \mathbb{R}^{H_{2} \times W_{2} \times C_{\text {out }}}$
Output channel 0 Output channel 1 Output channel 2 Output channel 3

Input Tensor $\mathcal{X} \in \mathbb{R}^{H_{1} \times W_{1} \times C_{\text {in }}}$

W_{1}

Although input and output tensors have three axes, convolution is 2 D , not 3 D .
> There's a 2D convolution filter mask for every input-output channel pair ($3 \times 4=12$ in this example).

2D Convolution: Tensor View

Output Tensor $\mathcal{Y} \in \mathbb{R}^{H_{2} \times W_{2} \times C_{\text {out }}}$
Output channel 0 Output channel 1 Output channel 2 Output channel 3

Input Tensor $\mathcal{X} \in \mathbb{R}^{H_{1} \times W_{1} \times C_{\text {in }}}$

Filter Weight Tensor $\mathcal{W} \in \mathbb{R}^{F_{y} \times F_{x} \times C_{i n} \times C_{\text {out }}}$
© Copyright 2019 Xilinx
K. XILINX.

2D Convolution: Tensor View

Output Tensor $y \in \mathbb{R}^{H_{2} \times W_{2} \times C_{\text {out }}}$
Output channel 0 Output channel 1 Output channel 2 Output channel 3

Input Tensor $\mathcal{X} \in \mathbb{R}^{H_{1} \times W_{1} \times c_{\text {in }}}$

Filter Weight Tensor $\mathcal{W} \in \mathbb{R}^{F_{y} \times F_{x} \times C_{\text {in }} \times C_{\text {out }}}$
© Copyright 2019 Xilinx
§: XILINX.

2D Convolution: From Tensor to Flat View

 one per input channel

2D Convolution: Flat View

Parallel convolution sliding windows, one per input channel

2D Convolution: Flat View

Parallel convolution sliding windows, one per input channel

2D Convolution: Flat Silicon View

- Input channel broadcast
- Per-channel element-wise multiplication with filter weights

Reduction per output channel

Interpreting Weights (Sort of)

Reshaping Tensors to Matrices

3-Mode Output Tensor

$Y \in \mathbb{R}^{H_{2} \times W_{2} \times C_{\text {out }}}$

Elements per Output Channel

$$
N=28 \times 28=784
$$

Reshaping Tensors to Matrices

3-Mode Output Tensor

$Y \in \mathbb{R}^{H_{2} \times W_{2} \times C_{\text {out }}}$

Elements per Output Channel

$$
N=28 \times 28=784
$$

Output channels

\square

Output Matrix
$Y \in \mathbb{R}^{C_{o u t} \times H_{2} W_{2}}$

Reshaping Tensors to Matrices

3-Mode Output Tensor
$Y \in \mathbb{R}^{H_{2} \times W_{2} \times C_{o u t}}$

Elements per Output Channel

$$
N=28 \times 28=784
$$

4-Mode Weight Tensor
$\mathcal{V} \in \mathbb{R}^{F_{y} \times F_{x} \times C_{i n} \times C_{\text {out }}}$

Input Channels \times Weights per Filter

Reshaping Tensors to Matrices

3-Mode Output Tensor
$y \in \mathbb{R}^{H_{2} \times W_{2} \times C_{o u t}}$

Elements per Output Channel

Reshaping Tensors to Matrices for Matrix Multipliers

3-Mode Output Tensor
$y \in \mathbb{R}^{H_{2} \times W_{2} \times C_{o u t}}$

Elements per Output Channel

4-Mode Weight Tensor
$\mathcal{W} \in \mathbb{R}^{F_{y} \times F_{x} \times C_{i n} \times C_{\text {out }}}$

Input Channels \times Weights per Filter

3-Mode Input Tensor $\mathcal{X} \in \mathbb{R}^{H_{1} \times W_{1} \times C_{i n}}$

$N=28 \times 28=784$

Input Matrix $X \in \mathbb{R}^{F_{y} F_{x} C_{i n} \times H_{2} W_{2}}$

Reshaping Tensors to Matrices for Matrix Multipliers

3-Mode Output Tensor
$y \in \mathbb{R}^{H_{2} \times W_{2} \times C_{o u t}}$

Elements per Output Channel

4-Mode Weight Tensor
$\mathcal{W} \in \mathbb{R}^{F_{y} \times F_{x} \times C_{i n} \times C_{\text {out }}}$

3-Mode Input Tensor $\mathcal{X} \in \mathbb{R}^{\boldsymbol{H}_{1} \times W_{1} \times C_{i n}}$

Input Channels \times Weights per Filter

$N=28 \times 28=784$

Input Matrix $X \in \mathbb{R}^{F_{y} F_{x} C_{i n} \times H_{2} W_{2}}$

Applies to Any-Dimensional Convolution

Conv1D: Speech, biomedical data classification, anomaly detection

Applies to Any-Dimensional Convolution

Conv1D: Speech, biomedical data classification, anomaly detection Conv2D: Image classification, object detection

Applies to Any-Dimensional Convolution

Conv1D: Speech, biomedical data classification, anomaly detection Conv2D: Image classification, object detection Conv3D: Medical imaging, video analytics

Applies to Any-Dimensional Convolution

Conv1D: Speech, biomedical data classification, anomaly detection
Conv2D: Image classification, object detection Conv3D: Medical imaging, video analytics
Conv4D: Light-field imaging for material recognition

Applies to Any-Dimensional Convolution

Conv1D: Speech, biomedical data classification, anomaly detection
Conv2D: Image classification, object detection
Conv3D: Medical imaging, video analytics
Conv4D: Light-field imaging for material recognition
N-Mode Output Tensor

$$
y \in \mathbb{R}^{\boldsymbol{o}_{1} \times \cdots \times \boldsymbol{o}_{N} \times C_{\text {out }}}
$$

($N+1$)-Mode Weight Tensor
$\mathcal{W} \in \mathbb{R}^{F_{1} \times \cdots \times F_{N} \times C_{i n} \times C_{\text {out }}}$

$$
y=w x
$$

N-Mode Input Tensor
$X \in \mathbb{R}^{I_{1} \times \cdots \times I_{N} \times C_{i n}}$

Applies to Any-Dimensional Convolution

Conv1D: Speech, biomedical data classification, anomaly detection
Conv2D: Image classification, object detection
Conv3D: Medical imaging, video analytics
Conv4D: Light-field imaging for material recognition
N-Mode Output Tensor

$$
y \in \mathbb{R}^{\boldsymbol{o}_{1} \times \cdots \times \boldsymbol{o}_{N} \times C_{\text {out }}}
$$

($N+1$)-Mode Weight Tensor
$\mathcal{W} \in \mathbb{R}^{F_{1} \times \cdots \times F_{N} \times C_{i n} \times C_{\text {out }}}$

$y=\mathcal{W} x$
 $$
Y=W X
$$

Output Matrix
$Y \in \mathbb{R}^{C_{\text {out }} \times\left(0_{1} \cdots 0_{N}\right)}$

Weight Matrix
$W \in \mathbb{R}^{C_{\text {out }} \times\left(F_{1} \cdots F_{N}\right) C_{i n}}$
N-Mode Input Tensor
$X \in \mathbb{R}^{I_{1} \times \cdots \times I_{N} \times C_{\text {in }}}$

Applies to Any-Dimensional Convolution

Conv1D: Speech, biomedical data classification, anomaly detection
Conv2D: Image classification, object detection
Conv3D: Medical imaging, video analytics
Conv4D: Light-field imaging for material recognition
N-Mode Output Tensor

$$
y \in \mathbb{R}^{\boldsymbol{o}_{1} \times \cdots \times \boldsymbol{o}_{N} \times C_{\text {out }}}
$$

($N+1$)-Mode Weight Tensor
$\mathcal{W} \in \mathbb{R}^{F_{1} \times \cdots \times F_{N} \times C_{\text {in }} \times C_{\text {out }}}$
N-Mode Input Tensor
$\mathcal{X} \in \mathbb{R}^{I_{1} \times \cdots \times I_{N} \times C_{\text {in }}}$

Weight Matrix
$W \in \mathbb{R}^{C_{\text {out }} \times\left(F_{1} \cdots F_{N}\right) C_{i n}}$

Basically, parenthesize axes to make both hardware and software happy

Output Matrix
$Y \in \mathbb{R}^{C_{\text {out }} \times\left(\boldsymbol{O}_{1} \cdots \boldsymbol{O}_{N}\right)}$

Input Matrix

$$
X \in \mathbb{R}^{\left(F_{1} \cdots F_{N}\right) c_{i n} \times\left(I_{1} \cdots I_{N}\right)}
$$

Decide What You Need to Optimize in Hardware

> Convolution parameters and flavors
>> Padding, strides, number of axes
>> Dilated, transposed, depthwise-separable,...
>> See Session M2, FPL 19.
> Winograd algorithm: patch size vs. speed-up vs. numerical stability
$>$ Balance ease of use vs. energy efficiency using mixed data types
> Hardware-software co-design
>> Good data movement instructions keep compute fed and software stable
>> FPGAs provides adaptability, especially for non-linear layers

Natural-Language Processing

₹. XLINX

Reading Comprehension (SQuAD Dataset)

Tesla theorized that the application of electricity to the brain enhanced intelligence. In 1912, he crafted "a plan to make dull students bright by saturating them unconsciously with electricity," wiring the walls of a schoolroom and, "saturating [the schoolroom] with infinitesimal electric waves vibrating at high frequency. The whole room will thus, Mr. Tesla claims, be converted into a health-giving and stimulating electromagnetic field or 'bath.'" The plan was, at least provisionally approved by then superintendent of New York City schools, William H. Maxwell.

Natural Language Processing: Reading Comprehension

Stanford Question and Answering Dataset (SQuAD) 1.1

Stanford Question and Answering Dataset (SQuAD) 1.1

Stanford Question and Answering Dataset (SQuAD) 1.1

SQuAD 2.0 (with Unanswerable Questions)

SQuAD 2.0 Monthly High Scores

Convolution vs. Attention

Self-Attention

Attention Mechanism

Associative Array or Content-Addressable Memory

Attention Mechanism

What does this query match?

Query

Key

Blue

Attention Mechanism

Exact match between query and one of the keys

Query

Attention Mechanism

Returns associated value. Each query is a one-hot vector.

Query
Key

Value

Attention in Neural Networks

Attention: Soft Associative Array

Attention in Neural Networks

What does this query match?

Attention in Neural Networks

Can we "soft-match?" Dot product measures similarity. Dot

Query	Key	Product	Value
$[-0.2,1.1,-0.9]$	$[-0.2,1.1,-0.9]$	2.1	$[235,28,35]$
	$[0.4,0.7,-1.1]$	1.7	$[30,100,14]$
	$[-0.1,-1.2,1.1]$	-2.3	$[74,126,207]$

Attention in Neural Networks

Exponentiate

Attention in Neural Networks

Normalize. Softmax!

Query		Key	Weight
Value			
$[-0.2,1.1,-0.9]$	$[-0.2,1.1,-0.9]$	58.9%	$[235,28,35]$
	$[0.4,0.7,-1.1]$	40.3%	$[30,100,14]$
	$[-0.1,-1.2,1.1]$	0.76%	$[74,126,207]$

Attention in Neural Networks

Weighted sum of values:

[151, 58, 28]

Query	Key	Weight	Value
$[-0.2,1.1,-0.9]$	$[-0.2,1.1,-0.9]$	58.9%	$[235,28,35]$
	$[0.4,0.7,-1.1]$	40.3%	$[30,100,14]$
	$[-0.1,-1.2,1.1]$	0.76%	$[74,126,207]$

Attention in Neural Networks

In matrix form for multiple queries in parallel hardware:

Need more softmax than typical vision neural networks.
Can add in ACAP/FPGA.

Word Embeddings

Words represented as vectors (>500 components)
"You shall know a word by the company it keeps."

Word analogy
is : was :: ? : were

Word Embeddings

Word analogy

is : was :: ? : were

Word Embeddings

Word analogy

is : was :: ? : were

Word Embeddings

Word analogy

is : was :: are : were

Word Embeddings

Word analogy

is : was :: are : were

Embedding analogy

is - was \approx are - were

Word Embeddings

Embeddings from unsupervised training

Word analogy

is : was :: are : were

Embedding analogy
is - was \approx are - were

Model Sizes

>Embedding storage in Translation Networks
> Transformer Base: ~32K $\times 512$ fp32
>> OpenAI GPT-2: ~50K $\times 1600$ fp32
>> Above examples considered small
>> Can convert fp32 to 8-bit or 16-bit data types
$>$ Model sizes (Number of parameters)
>> Transformer Base: 61M
>> Open AI GPT-2: 1.6B
$>$ Instruction set and tensor SRAM tuned for random \& burst HBM
> Beam search

Combining Vision and Language

§ XILINX

From Image Classification to Object Detection

From Reading Comprehension and Object Detection to Visual Reasoning

Era of Easy Scaling Over

- Moore's Law

Transistor improvement slows

Σ
Amdah's Law
Multicore not enough

Dennard Scaling

Power density rises

40 Years of Processor Performance

[^0]
Built to Last

>Model commands after NN framework function calls
>> Linear layers: matrix multiplication \& convolution
>> Attention is powerful and good for parallelism
>> Beam search in NLP: Amdahl's Law
>> Activation functions, N-D pooling, layer normalization, NMS, LSTM, RNN, GRU, ...
> Compute is easy. Memory is hard and is key to a adaptable design.
> Neural networks do merge, e.g. captioning, visual reasoning
$>$ ML moves fast. Plan instruction superset upfront for adaptability.
> Implement what you need today. Reconfigure HW to adapt to changes.

Thank you
₹. XILINX

Adaptable. Intelligent.

§. XILINX

[^0]: Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018

