
© Copyright 2019 Xilinx

Ephrem Wu
FPL 2019

Accelerator Overlays:
Spec What You Want,
Build What You Need

© Copyright 2019 Xilinx

FPGA Overlay Accelerator

FPGA Silicon

© Copyright 2019 Xilinx

FPGA Overlay Accelerator

FPGA Silicon

Accelerator Overlay

© Copyright 2019 Xilinx

FPGA Overlay Accelerator

FPGA Silicon

Accelerator Overlay

Application Software

© Copyright 2019 Xilinx

Vision Neural Networks

© Copyright 2019 Xilinx

Image Classification

cat
traffic light
table
airplane

© Copyright 2019 Xilinx

ImageNet Challenge Accuracy Progress 2010—2017

0%

5%

10%

15%

20%

25%

30%

NEC-UIUC XRCE SuperVision
(a.k.a. AlexNet)

Clarifai GoogLeNet MSRA Trimps-Soushen SENet

2010 2011 2012 2013 2014 2015 2016 2017

ImageNet Challenge Winner Top-5 Error Rates

Convolutional Neural Networks

Human

© Copyright 2019 Xilinx

2015—2019: Faster, Smaller, More Accurate

Compute

Ac
cu

ra
cy

Graphs based on M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” ICML 2019
Single crop, single model

http://proceedings.mlr.press/v97/tan19a/tan19a.pdf

© Copyright 2019 Xilinx

2015—2019: Faster, Smaller, More Accurate, and Machine-Made

Compute

Ac
cu

ra
cy

Graphs based on M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” ICML 2019
Single crop, single model

Hand-designed

http://proceedings.mlr.press/v97/tan19a/tan19a.pdf

© Copyright 2019 Xilinx

2015—2019: Faster, Smaller, More Accurate, and Machine-Made

Compute

Ac
cu

ra
cy

Graphs based on M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” ICML 2019
Single crop, single model

Hand-designed

Network architecture search

http://proceedings.mlr.press/v97/tan19a/tan19a.pdf

© Copyright 2019 Xilinx

2015—2019: Faster, Smaller, More Accurate, and Machine-Made

Compute

Ac
cu

ra
cy

Graphs based on M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” ICML 2019
Single crop, single model

Hand-designed

Network architecture search

Network architecture search
with depth/width/resolution
scaling

http://proceedings.mlr.press/v97/tan19a/tan19a.pdf

© Copyright 2019 Xilinx

2015—2019: Faster, Smaller, More Accurate, and Machine-Made

Compute Model Size

Ac
cu

ra
cy

Graphs based on M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” ICML 2019
Single crop, single model

http://proceedings.mlr.press/v97/tan19a/tan19a.pdf

© Copyright 2019 Xilinx

High-Throughput Linear Layers

˃High clock rates

© Copyright 2019 Xilinx

High-Throughput Linear Layers

˃High clock rates
Build fast (peak DSP clock rate) matrix multipliers on FPGAs

© Copyright 2019 Xilinx

High-Throughput Linear Layers

˃High clock rates
Build fast (peak DSP clock rate) matrix multipliers on FPGAs
Keep interconnects between memory and compute simple

© Copyright 2019 Xilinx

High-Throughput Linear Layers

˃High clock rates
Build fast (peak DSP clock rate) matrix multipliers on FPGAs
Keep interconnects between memory and compute simple
Can still get 90% peak clock rate in overlay processor
Similar principle to RISC

E. Wu, X. Zhang, D. Berman, I. Cho, J. Thendean, “Compute-Efficient Neural-Network Acceleration,” FPGA 2019.

https://dl.acm.org/citation.cfm?id=3293925

© Copyright 2019 Xilinx

High-Throughput Linear Layers

˃High clock rates
Build fast (peak DSP clock rate) matrix multipliers on FPGAs
Keep interconnects between memory and compute simple
Can still get 90% peak clock rate in overlay processor
Similar principle to RISC

˃High compute efficiency

© Copyright 2019 Xilinx

High-Throughput Linear Layers

˃High clock rates
Build fast (peak DSP clock rate) matrix multipliers on FPGAs
Keep interconnects between memory and compute simple
Can still get 90% peak clock rate in overlay processor
Similar principle to RISC

˃High compute efficiency
Tensors reshaped into matrices
Matrices blocked for FPGA matrix multipliers

© Copyright 2019 Xilinx

High-Throughput Linear Layers

˃High clock rates
Build fast (peak DSP clock rate) matrix multipliers on FPGAs
Keep interconnects between memory and compute simple
Can still get 90% peak clock rate in overlay processor
Similar principle to RISC

˃High compute efficiency
Tensors reshaped into matrices
Matrices blocked for FPGA matrix multipliers
Memory allocation, address generation, and non-linear layers key to
success

© Copyright 2019 Xilinx

A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor
Buffer

Accumulators

Auxiliary Processing

Neural-Net
Program

For domain-specific architectures, see Hennessey and Patterson, “A New Golden Age for Computer Architecture, ” Communications of the ACM, February 2019, Vol. 62 No. 2, pp 48-60.

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext?mobile=false

© Copyright 2019 Xilinx

A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor
Buffer

Accumulators

Auxiliary Processing

Neural-Net
ProgramSquint and every architecture

looks the same?

© Copyright 2019 Xilinx

A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor
Buffer

Accumulators

Auxiliary Processing

Neural-Net
Program

Keep these networks
simple

© Copyright 2019 Xilinx

A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor
Buffer

Accumulators

Auxiliary Processing

Neural-Net
ProgramCISC instructions are back.

Thank you, dataflow graphs.

© Copyright 2019 Xilinx

An Example Command

𝑋𝑋 = max 𝐴𝐴𝐴𝐴 + 𝑐𝑐𝟏𝟏𝑇𝑇 , 0

X = relu(add(matmul(A, B), broadcast(c))

No explicit nested loops.
Dimensions in tensors.
One tensor memory roundtrip.

© Copyright 2019 Xilinx

A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor
Buffer

Accumulators

Auxiliary Processing

Neural-Net
ProgramUse small PEs and

DSP cascades.
Go for near-Fmax!

© Copyright 2019 Xilinx

MxV: Don’t Leave Performance on the Table

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0
100
200
300
400
500
600
700
800
900

1000

A
ch

ie
ve

d
 C

lo
ck

 R
at

e

C
lo

ck
 R

at
e

(M
H

z)

Achieved Operating Clock Rate(MHz)
Max. Datasheet DSP Clock Rate (MHz)
Realized Performance (%)

References from FPL17

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8056794

© Copyright 2019 Xilinx

MxV: Don’t Leave Performance on the Table

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0
100
200
300
400
500
600
700
800
900

1000

A
ch

ie
ve

d
 C

lo
ck

 R
at

e

C
lo

ck
 R

at
e

(M
H

z)

Achieved Operating Clock Rate(MHz)
Max. Datasheet DSP Clock Rate (MHz)
Realized Performance (%)

References from FPL17

Do

Don’t

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8056794

© Copyright 2019 Xilinx

Compute-Efficient Neural Processor Overlay [FPGA 2019]
˃ Platform: VCU1525 board with VU9P-2 FPGA

˃ Case Study: GoogLeNet v1 Inference
3 parallel GoogLeNets with independent weights
Each network runs with batch size 1
Aggregate 3046 images/sec, 3.3 ms latency

˃ Compute
DSP supertile arrays running at 720 MHz
56% DSP48 tiles consumed, DSP cycles 95% utilized
Per-tensor block floating-point, 8-/16-bit significands

˃ Memory
No external DRAM on accelerator card used
All tensors stored in UltraRAM & BRAM
1/2 DSP clock rate to simplify timing convergence

VU9P Layout

© Copyright 2019 Xilinx

A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor
Buffer

Accumulators

Auxiliary Processing

Neural-Net
Program

Use low-precision here.

© Copyright 2019 Xilinx

Uniform Quantization
𝑥𝑥 Original dist.

(e.g. in fp32)

© Copyright 2019 Xilinx

Uniform Quantization

Scale

𝑥𝑥

𝑥𝑥
𝑠𝑠

Original dist.

Threshold scalar
to be learned

S. Jain et al., “Trained Uniform Quantization for Accurate and Efficient Neural Network Inference on Fixed-Point Hardware,” http://arxiv.org/abs/1903.08066

http://arxiv.org/abs/1903.08066

© Copyright 2019 Xilinx

Uniform Quantization

Scale

Round

𝑥𝑥

𝑥𝑥
𝑠𝑠

𝑥𝑥
𝑠𝑠

Original dist.

Scaled FP32
numbers
rounded to
integers

© Copyright 2019 Xilinx

Uniform Quantization

Scale

Round

𝑥𝑥

𝑥𝑥
𝑠𝑠

𝑥𝑥
𝑠𝑠

Clip

Original dist.

−𝑍𝑍 𝑄𝑄 − 𝑍𝑍 − 10

clip 𝑥𝑥
𝑠𝑠

,−𝑍𝑍,𝑄𝑄 − 𝑍𝑍 − 1

© Copyright 2019 Xilinx

Uniform Quantization

Scale

Round

𝑥𝑥

𝑥𝑥
𝑠𝑠

𝑥𝑥
𝑠𝑠

Clipclip 𝑥𝑥
𝑠𝑠

,−𝑍𝑍,𝑄𝑄 − 𝑍𝑍 − 1

Original dist.

−𝑍𝑍 𝑄𝑄 − 𝑍𝑍 − 10
Exact zeroZero point

© Copyright 2019 Xilinx

Uniform Quantization

Scale

Round

𝑥𝑥

𝑥𝑥
𝑠𝑠

𝑥𝑥
𝑠𝑠

Clip

Original dist.

Zero point Bins −𝑍𝑍 𝑄𝑄 − 𝑍𝑍 − 10
Exact zero

clip 𝑥𝑥
𝑠𝑠

,−𝑍𝑍,𝑄𝑄 − 𝑍𝑍 − 1

© Copyright 2019 Xilinx

Uniform Quantization

Scale

Round

𝑥𝑥

𝑥𝑥
𝑠𝑠

𝑥𝑥
𝑠𝑠

Clip

Original dist.

−𝑍𝑍 𝑄𝑄 − 𝑍𝑍 − 10

Range can be asymmetric.
This example favors precision
over range.

© Copyright 2019 Xilinx

INT-to-Float

−𝑍𝑍 𝑄𝑄 − 𝑍𝑍 − 10

𝑞𝑞 = clip 𝑥𝑥
𝑠𝑠

,−𝑍𝑍,𝑄𝑄 − 𝑍𝑍 − 1

Numbers that enter
integer matrix
multiplier hardware

© Copyright 2019 Xilinx

INT-to-Float

�𝑥𝑥 = 𝑠𝑠𝑞𝑞
Floating-point numbers with
quantization noise for
simulation using floating-point
hardware

−𝑍𝑍 𝑄𝑄 − 𝑍𝑍 − 10

𝑞𝑞 = clip 𝑥𝑥
𝑠𝑠

,−𝑍𝑍,𝑄𝑄 − 𝑍𝑍 − 1

Numbers that enter
integer matrix
multiplier hardware

© Copyright 2019 Xilinx

Which int8?

Example Zero Point 𝒁𝒁 Bins 𝑸𝑸 Integer Values
int8 128 256 −128, 127

R. Krishnamoorthi et al., “Quantizing deep convolutional networks for efficient inference: A whitepaper,” https://arxiv.org/abs/1806.08342

https://arxiv.org/abs/1806.08342

© Copyright 2019 Xilinx

Which int8?

Example Zero Point 𝒁𝒁 Bins 𝑸𝑸 Integer Values
int8 128 256 −128, 127
Symmetric int8 127 255 −127, 127

R. Krishnamoorthi et al., “Quantizing deep convolutional networks for efficient inference: A whitepaper,” https://arxiv.org/abs/1806.08342

https://arxiv.org/abs/1806.08342

© Copyright 2019 Xilinx

Which int8?

Example Zero Point 𝒁𝒁 Bins 𝑸𝑸 Integer Values
int8 128 256 −128, 127
Symmetric int8 127 255 −127, 127
uint8 0 256 0,255

R. Krishnamoorthi et al., “Quantizing deep convolutional networks for efficient inference: A whitepaper,” https://arxiv.org/abs/1806.08342

https://arxiv.org/abs/1806.08342

© Copyright 2019 Xilinx

In general…

Zero Point 𝒁𝒁 Bins 𝑸𝑸 Integer Values
𝟐𝟐𝒃𝒃 levels with zero
point 𝒁𝒁

𝑍𝑍 ∈ 0,2𝑏𝑏 − 1 2b −𝑍𝑍, 2b − 1 − 𝑍𝑍

R. Krishnamoorthi et al., “Quantizing deep convolutional networks for efficient inference: A whitepaper,” https://arxiv.org/abs/1806.08342

https://arxiv.org/abs/1806.08342

© Copyright 2019 Xilinx

A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor
Buffer

Accumulators

Auxiliary Processing

Neural-Net
ProgramUse in-package memory

SRAM: URAM + BRAM
DRAM: HBM

© Copyright 2019 Xilinx

UltraScale+™ Memory

Capacity

Ba
nd

w
id

th

© Copyright 2019 Xilinx

UltraScale+™ Memory

Capacity

Ba
nd

w
id

th

New in UltraScale+™

© Copyright 2019 Xilinx

Use FPGA URAM for Capacity and Bandwidth

0.0768

3.072

9.216

12.288

0

2

4

6

8

10

12

14

DDR4 4x64 VU3P 320 URAMs VU9P 960 URAMs VU13P 1280 URAMs

Ba
nd

w
id

th
 (T

B/
s)

Memory Bandwidth

On-Chip SRAMOff-Chip DRAM

Holds three copies of GoogLeNet
8-bit weights and activations

30MB + ECC 40MB + ECC10MB + ECC

© Copyright 2019 Xilinx

A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor
Buffer

Accumulators

Auxiliary Processing

Neural-Net
ProgramReduction in DSP mult-add cascade

Broadcast in fabric pipeline
Been there since Day One of DSP blocks.

© Copyright 2019 Xilinx

A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor
Buffer

Accumulators

Auxiliary Processing

Neural-Net
ProgramKey to compute efficiency:

Tensor-to-matrix memory allocation
and address generation

© Copyright 2019 Xilinx

A Domain-Specific Architecture for Neural Networks

Matrix-Vector Multiplier
(MxV)

Tensor
Buffer

Accumulators

Auxiliary Processing

Neural-Net
ProgramMap channels to MxV lanes to

simplify address generation.

© Copyright 2019 Xilinx

2D Convolution: Tensor View

Input Channel 0

Input Channel 1

Input Channel 2
Input Tensor 𝒳𝒳 ∈ ℝ𝐻𝐻1×𝑊𝑊1×𝐶𝐶𝑖𝑖𝑖𝑖

𝐻𝐻1

𝑊𝑊1

𝐶𝐶𝑖𝑖𝑖𝑖

𝐻𝐻1

𝑊𝑊1

© Copyright 2019 Xilinx

2D Convolution: Tensor View

Input Channel 0

Input Channel 1

Input Channel 2

Output channel 0 Output channel 1 Output channel 2 Output channel 3

Input Tensor 𝒳𝒳 ∈ ℝ𝐻𝐻1×𝑊𝑊1×𝐶𝐶𝑖𝑖𝑖𝑖

Output Tensor 𝒴𝒴 ∈ ℝ𝐻𝐻2×𝑊𝑊2×𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

𝐻𝐻1

𝑊𝑊1

𝐻𝐻2

𝐶𝐶𝑖𝑖𝑖𝑖

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜
𝑊𝑊2

© Copyright 2019 Xilinx

2D Convolution: Tensor View

˃ Although input and output tensors have three axes,

convolution is 2D, not 3D.

˃ There’s a 2D convolution filter mask for every

input-output channel pair

(3 × 4 = 12 in this example).

Input Channel 0

Input Channel 1

Input Channel 2

Output channel 0 Output channel 1 Output channel 2 Output channel 3

Input Tensor 𝒳𝒳 ∈ ℝ𝐻𝐻1×𝑊𝑊1×𝐶𝐶𝑖𝑖𝑖𝑖

Output Tensor 𝒴𝒴 ∈ ℝ𝐻𝐻2×𝑊𝑊2×𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

𝐻𝐻1

𝑊𝑊1

𝐻𝐻2

𝐶𝐶𝑖𝑖𝑖𝑖

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜
𝑊𝑊2

© Copyright 2019 Xilinx

2D Convolution: Tensor View

Input Channel 0

Input Channel 1

Input Channel 2

Output filter 0 Output filter 1 Output filter 2 Output filter 3

Output channel 0 Output channel 1 Output channel 2 Output channel 3

Input Tensor 𝒳𝒳 ∈ ℝ𝐻𝐻1×𝑊𝑊1×𝐶𝐶𝑖𝑖𝑖𝑖

Output Tensor 𝒴𝒴 ∈ ℝ𝐻𝐻2×𝑊𝑊2×𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

Filter Weight Tensor 𝒲𝒲 ∈ ℝ𝐹𝐹𝑦𝑦×𝐹𝐹𝑥𝑥×𝐶𝐶𝑖𝑖𝑖𝑖×𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

𝐻𝐻1

𝑊𝑊1

𝐹𝐹𝑦𝑦
𝐹𝐹𝑥𝑥

𝑊𝑊2

𝐻𝐻2

𝐶𝐶𝑖𝑖𝑖𝑖

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

© Copyright 2019 Xilinx

2D Convolution: Tensor View

Input Channel 0

Input Channel 1

Input Channel 2

Output filter 0 Output filter 1 Output filter 2 Output filter 3

Output channel 0 Output channel 1 Output channel 2 Output channel 3

Input Tensor 𝒳𝒳 ∈ ℝ𝐻𝐻1×𝑊𝑊1×𝐶𝐶𝑖𝑖𝑖𝑖

Output Tensor 𝒴𝒴 ∈ ℝ𝐻𝐻2×𝑊𝑊2×𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

Filter Weight Tensor 𝒲𝒲 ∈ ℝ𝐹𝐹𝑦𝑦×𝐹𝐹𝑥𝑥×𝐶𝐶𝑖𝑖𝑖𝑖×𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

𝐻𝐻1

𝑊𝑊1

𝐹𝐹𝑦𝑦
𝐹𝐹𝑥𝑥

𝑊𝑊2

𝐻𝐻2

𝐶𝐶𝑖𝑖𝑖𝑖

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

MxV Output Lanes

© Copyright 2019 Xilinx

2D Convolution: From Tensor to Flat View

Input Image
In

pu
t C

ha
nn

el
s

Parallel convolution sliding windows,
one per input channel

© Copyright 2019 Xilinx

2D Convolution: Flat View

Input Image
In

pu
t C

ha
nn

el
s

Parallel convolution sliding windows,
one per input channel

© Copyright 2019 Xilinx

2D Convolution: Flat View

Input Image
In

pu
t C

ha
nn

el
s

Parallel convolution sliding windows,
one per input channel

© Copyright 2019 Xilinx

2D Convolution: Flat Silicon View

Input Image
In

pu
t C

ha
nn

el
s

× × × ×

× × × ×

× × × ×

• Input channel broadcast
• Per-channel element-wise

multiplication with filter weights

© Copyright 2019 Xilinx

2D Convolution: Flat Silicon View

Input Image

𝑑𝑑2 = 1 𝑑𝑑2 = 2 𝑑𝑑2 = 3 𝑑𝑑2 = 4

In
pu

t C
ha

nn
el

s

+ + + +× × × ×

× × × ×

Σ Σ Σ Σ× × × ×

Reduction per output channel

Accumulates
3 × 3 × 3 = 27 products

© Copyright 2019 Xilinx

Interpreting Weights (Sort of)

Input Image

𝑑𝑑2 = 1 𝑑𝑑2 = 2 𝑑𝑑2 = 3 𝑑𝑑2 = 4

In
pu

t C
ha

nn
el

s

+ + + +× × × ×

× × × ×

Σ Σ Σ Σ× × × ×

Looking for
green patches

Looking for edges

© Copyright 2019 Xilinx

N = 28 × 28 = 784

M
 =

 1
92

O
ut

pu
t c

ha
nn

el
s

Elements per Output Channel

Reshaping Tensors to Matrices

28 × 28

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192

3-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑯𝑯𝟐𝟐×𝑾𝑾𝟐𝟐×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

Output Matrix
𝒀𝒀 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑯𝑯𝟐𝟐𝑾𝑾𝟐𝟐

© Copyright 2019 Xilinx

N = 28 × 28 = 784

M
 =

 1
92

O
ut

pu
t c

ha
nn

el
s

Elements per Output Channel

Reshaping Tensors to Matrices

28 × 28

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192

3-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑯𝑯𝟐𝟐×𝑾𝑾𝟐𝟐×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

Output Matrix
𝒀𝒀 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑯𝑯𝟐𝟐𝑾𝑾𝟐𝟐

© Copyright 2019 Xilinx

N = 28 × 28 = 784

M
 =

 1
92

O
ut

pu
t c

ha
nn

el
s

Elements per Output Channel Input Channels × Weights per Filter

K = 3 × 3 × 128 = 1152

M
 =

 1
92

Reshaping Tensors to Matrices

28 × 28

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192
3 × 3

3 × 3

3 × 33 × 3

3 × 3
3 × 3

3 × 33 × 3

𝐶𝐶𝑖𝑖𝑖𝑖 = 128

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192

3-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑯𝑯𝟐𝟐×𝑾𝑾𝟐𝟐×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

4-Mode Weight Tensor
𝒲𝒲 ∈ ℝ𝑭𝑭𝒚𝒚×𝑭𝑭𝒙𝒙×𝑪𝑪𝒊𝒊𝒊𝒊×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

Output Matrix
𝒀𝒀 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑯𝑯𝟐𝟐𝑾𝑾𝟐𝟐

Weight Matrix
𝑾𝑾 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑭𝑭𝒚𝒚𝑭𝑭𝒙𝒙𝑪𝑪𝒊𝒊𝒊𝒊

© Copyright 2019 Xilinx

N = 28 × 28 = 784

M
 =

 1
92

O
ut

pu
t c

ha
nn

el
s

Elements per Output Channel Input Channels × Weights per Filter

K = 3 × 3 × 128 = 1152

M
 =

 1
92

Reshaping Tensors to Matrices

28 × 28

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192
3 × 3

3 × 3

3 × 33 × 3

3 × 3
3 × 3

3 × 33 × 3

𝐶𝐶𝑖𝑖𝑖𝑖 = 128

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192

3-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑯𝑯𝟐𝟐×𝑾𝑾𝟐𝟐×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

4-Mode Weight Tensor
𝒲𝒲 ∈ ℝ𝑭𝑭𝒚𝒚×𝑭𝑭𝒙𝒙×𝑪𝑪𝒊𝒊𝒊𝒊×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

Output Matrix
𝒀𝒀 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑯𝑯𝟐𝟐𝑾𝑾𝟐𝟐

Weight Matrix
𝑾𝑾 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑭𝑭𝒚𝒚𝑭𝑭𝒙𝒙𝑪𝑪𝒊𝒊𝒊𝒊

© Copyright 2019 Xilinx

Reshaping Tensors to Matrices for Matrix Multipliers

N = 28 × 28 = 784

K
=

11
52

N = 28 × 28 = 784

M
 =

 1
92

O
ut

pu
t c

ha
nn

el
s

Elements per Output Channel Input Channels × Weights per Filter

K = 3 × 3 × 128 = 1152

=
M

 =
 1

92

28 × 28

𝐶𝐶𝑖𝑖𝑖𝑖 = 128

28 × 28

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192
3 × 3

3 × 3

3 × 33 × 3

3 × 3
3 × 3

3 × 33 × 3
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192

3-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑯𝑯𝟐𝟐×𝑾𝑾𝟐𝟐×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

4-Mode Weight Tensor
𝒲𝒲 ∈ ℝ𝑭𝑭𝒚𝒚×𝑭𝑭𝒙𝒙×𝑪𝑪𝒊𝒊𝒊𝒊×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

3-Mode Input Tensor
𝒳𝒳 ∈ ℝ𝑯𝑯𝟏𝟏×𝑾𝑾𝟏𝟏×𝑪𝑪𝒊𝒊𝒊𝒊

Output Matrix
𝒀𝒀 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑯𝑯𝟐𝟐𝑾𝑾𝟐𝟐

Weight Matrix
𝑾𝑾 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑭𝑭𝒚𝒚𝑭𝑭𝒙𝒙𝑪𝑪𝒊𝒊𝒊𝒊

Input Matrix
𝑿𝑿 ∈ ℝ𝑭𝑭𝒚𝒚𝑭𝑭𝒙𝒙𝑪𝑪𝒊𝒊𝒊𝒊×𝑯𝑯𝟐𝟐𝑾𝑾𝟐𝟐

𝐶𝐶𝑖𝑖𝑖𝑖 = 128

© Copyright 2019 Xilinx

Reshaping Tensors to Matrices for Matrix Multipliers

N = 28 × 28 = 784

K
=

11
52

N = 28 × 28 = 784

M
 =

 1
92

O
ut

pu
t c

ha
nn

el
s

Elements per Output Channel Input Channels × Weights per Filter

K = 3 × 3 × 128 = 1152

=
M

 =
 1

92

28 × 28

𝐶𝐶𝑖𝑖𝑖𝑖 = 128

28 × 28

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192
3 × 3

3 × 3

3 × 33 × 3

3 × 3
3 × 3

3 × 33 × 3
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 = 192

3-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑯𝑯𝟐𝟐×𝑾𝑾𝟐𝟐×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

4-Mode Weight Tensor
𝒲𝒲 ∈ ℝ𝑭𝑭𝒚𝒚×𝑭𝑭𝒙𝒙×𝑪𝑪𝒊𝒊𝒊𝒊×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

3-Mode Input Tensor
𝒳𝒳 ∈ ℝ𝑯𝑯𝟏𝟏×𝑾𝑾𝟏𝟏×𝑪𝑪𝒊𝒊𝒊𝒊

Output Matrix
𝒀𝒀 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑯𝑯𝟐𝟐𝑾𝑾𝟐𝟐

Weight Matrix
𝑾𝑾 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐×𝑭𝑭𝒚𝒚𝑭𝑭𝒙𝒙𝑪𝑪𝒊𝒊𝒊𝒊

Input Matrix
𝑿𝑿 ∈ ℝ𝑭𝑭𝒚𝒚𝑭𝑭𝒙𝒙𝑪𝑪𝒊𝒊𝒊𝒊×𝑯𝑯𝟐𝟐𝑾𝑾𝟐𝟐

𝐶𝐶𝑖𝑖𝑖𝑖 = 128

© Copyright 2019 Xilinx

Applies to Any-Dimensional Convolution
Conv1D: Speech, biomedical data classification, anomaly detection

© Copyright 2019 Xilinx

Applies to Any-Dimensional Convolution
Conv1D: Speech, biomedical data classification, anomaly detection
Conv2D: Image classification, object detection

© Copyright 2019 Xilinx

Applies to Any-Dimensional Convolution
Conv1D: Speech, biomedical data classification, anomaly detection
Conv2D: Image classification, object detection
Conv3D: Medical imaging, video analytics

© Copyright 2019 Xilinx

Applies to Any-Dimensional Convolution
Conv1D: Speech, biomedical data classification, anomaly detection
Conv2D: Image classification, object detection
Conv3D: Medical imaging, video analytics
Conv4D: Light-field imaging for material recognition

© Copyright 2019 Xilinx

Applies to Any-Dimensional Convolution

N-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑶𝑶𝟏𝟏×⋯×𝑶𝑶𝑵𝑵×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

(N+1)-Mode Weight Tensor
𝒲𝒲 ∈ ℝ𝑭𝑭𝟏𝟏×⋯×𝑭𝑭𝑵𝑵×𝑪𝑪𝒊𝒊𝒊𝒊×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

N-Mode Input Tensor
𝒳𝒳 ∈ ℝ𝑰𝑰𝟏𝟏×⋯×𝑰𝑰𝑵𝑵×𝑪𝑪𝒊𝒊𝒊𝒊

𝒴𝒴 = 𝒲𝒲𝒳𝒳

Conv1D: Speech, biomedical data classification, anomaly detection
Conv2D: Image classification, object detection
Conv3D: Medical imaging, video analytics
Conv4D: Light-field imaging for material recognition

© Copyright 2019 Xilinx

Applies to Any-Dimensional Convolution

N-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑶𝑶𝟏𝟏×⋯×𝑶𝑶𝑵𝑵×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

(N+1)-Mode Weight Tensor
𝒲𝒲 ∈ ℝ𝑭𝑭𝟏𝟏×⋯×𝑭𝑭𝑵𝑵×𝑪𝑪𝒊𝒊𝒊𝒊×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

N-Mode Input Tensor
𝒳𝒳 ∈ ℝ𝑰𝑰𝟏𝟏×⋯×𝑰𝑰𝑵𝑵×𝑪𝑪𝒊𝒊𝒊𝒊

𝒴𝒴 = 𝒲𝒲𝒳𝒳

Output Matrix
𝒀𝒀 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐× 𝑶𝑶𝟏𝟏⋯𝑶𝑶𝑵𝑵

Weight Matrix
𝑾𝑾 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐× 𝑭𝑭𝟏𝟏⋯𝑭𝑭𝑵𝑵 𝑪𝑪𝒊𝒊𝒊𝒊

Input Matrix
𝑿𝑿 ∈ ℝ 𝑭𝑭𝟏𝟏⋯𝑭𝑭𝑵𝑵 𝑪𝑪𝒊𝒊𝒊𝒊× 𝑰𝑰𝟏𝟏⋯𝑰𝑰𝑵𝑵

𝒀𝒀 = 𝑾𝑾𝑿𝑿

Conv1D: Speech, biomedical data classification, anomaly detection
Conv2D: Image classification, object detection
Conv3D: Medical imaging, video analytics
Conv4D: Light-field imaging for material recognition

© Copyright 2019 Xilinx

Applies to Any-Dimensional Convolution

N-Mode Output Tensor
𝒴𝒴 ∈ ℝ𝑶𝑶𝟏𝟏×⋯×𝑶𝑶𝑵𝑵×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

(N+1)-Mode Weight Tensor
𝒲𝒲 ∈ ℝ𝑭𝑭𝟏𝟏×⋯×𝑭𝑭𝑵𝑵×𝑪𝑪𝒊𝒊𝒊𝒊×𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐

N-Mode Input Tensor
𝒳𝒳 ∈ ℝ𝑰𝑰𝟏𝟏×⋯×𝑰𝑰𝑵𝑵×𝑪𝑪𝒊𝒊𝒊𝒊

𝒴𝒴 = 𝒲𝒲𝒳𝒳

Output Matrix
𝒀𝒀 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐× 𝑶𝑶𝟏𝟏⋯𝑶𝑶𝑵𝑵

Weight Matrix
𝑾𝑾 ∈ ℝ𝑪𝑪𝒐𝒐𝒐𝒐𝒐𝒐× 𝑭𝑭𝟏𝟏⋯𝑭𝑭𝑵𝑵 𝑪𝑪𝒊𝒊𝒊𝒊

Input Matrix
𝑿𝑿 ∈ ℝ 𝑭𝑭𝟏𝟏⋯𝑭𝑭𝑵𝑵 𝑪𝑪𝒊𝒊𝒊𝒊× 𝑰𝑰𝟏𝟏⋯𝑰𝑰𝑵𝑵

𝒀𝒀 = 𝑾𝑾𝑿𝑿

Conv1D: Speech, biomedical data classification, anomaly detection
Conv2D: Image classification, object detection
Conv3D: Medical imaging, video analytics
Conv4D: Light-field imaging for material recognition

Basically, parenthesize axes to
make both hardware and
software happy

© Copyright 2019 Xilinx

Decide What You Need to Optimize in Hardware

˃Convolution parameters and flavors
Padding, strides, number of axes
Dilated, transposed, depthwise-separable,…
See Session M2, FPL 19.

˃Winograd algorithm: patch size vs. speed-up vs. numerical stability

˃Balance ease of use vs. energy efficiency using mixed data types

˃Hardware-software co-design
Good data movement instructions keep compute fed and software stable
FPGAs provides adaptability, especially for non-linear layers

© Copyright 2019 Xilinx

Natural-Language Processing

© Copyright 2019 Xilinx

Reading Comprehension (SQuAD Dataset)

Tesla theorized that the application of electricity to the brain enhanced

intelligence. In 1912, he crafted "a plan to make dull students bright by

saturating them unconsciously with electricity," wiring the walls of a

schoolroom and, "saturating [the schoolroom] with infinitesimal electric

waves vibrating at high frequency. The whole room will thus, Mr. Tesla

claims, be converted into a health-giving and stimulating electromagnetic

field or 'bath.'" The plan was, at least provisionally approved by then

superintendent of New York City schools, William H. Maxwell.

Source: SQuAD

https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/Nikola_Tesla.html

© Copyright 2019 Xilinx

Natural Language Processing: Reading Comprehension

Source: SQuAD Website
Source: SQuAD

https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/Nikola_Tesla.html?model=r-net+%20(ensemble)%20(Microsoft%20Research%20Asia)
https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/Nikola_Tesla.html

© Copyright 2019 Xilinx

Stanford Question and Answering Dataset (SQuAD) 1.1

60

65

70

75

80

85

90

95

100

Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3

2016 2017 2018 2019

Sc
or

e
(%

)

Submission Quarter

SQuAD 1.1 Quarterly High Scores

Chart compiled from SQuAD submissions as of 8/21/2019

Machine F1

Machine Exact Match

Human F1

Human Exact Match

© Copyright 2019 Xilinx

Stanford Question and Answering Dataset (SQuAD) 1.1

60

65

70

75

80

85

90

95

100

Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3

2016 2017 2018 2019

Sc
or

e
(%

)

Submission Quarter

SQuAD 1.1 Quarterly High Scores

Chart compiled from SQuAD submissions as of 8/21/2019

1½ years to surpass human exact match

Machine F1

Machine Exact Match

Human F1

Human Exact Match

© Copyright 2019 Xilinx

Stanford Question and Answering Dataset (SQuAD) 1.1

60

65

70

75

80

85

90

95

100

Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3

2016 2017 2018 2019

Sc
or

e
(%

)

Submission Quarter

SQuAD 1.1 Quarterly High Scores

Chart compiled from SQuAD submissions as of 8/21/2019

1½ years to surpass human exact match

½ year more to surpass
human F1

Machine F1

Machine Exact Match

Human F1

Human Exact Match

© Copyright 2019 Xilinx

SQuAD 2.0 (with Unanswerable Questions)

60

65

70

75

80

85

90

95

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3

2018 2019

Sc
or

e
(%

)

Submission Month

SQuAD 2.0 Monthly High Scores

Max of Machine Exact Match

Max of Machine F1

Human Exact Match

Human F110 months to surpass human scores

Chart compiled from SQuAD submissions as of 8/21/2019

© Copyright 2019 Xilinx

Convolution vs. Attention
Weights fixed after training
Filter extent limited

Weights computed on-the-fly
Large extent (context)

D. Bahdanau, K. Cho, and Y. Bengio “Neural Machine Translation by Jointly Learning to Align and Translate,” ICLR 2015

https://arxiv.org/pdf/1409.0473.pdf

© Copyright 2019 Xilinx

Self-Attention

You shall know a word by the company it keeps.
John R. Firth, 1957

2.3%
2.0%
9.4%
0.9%

39.9%
9.4%
1.8%
7.2%
0.8%

13.2%
7.6%
5.4%

Attention display created with Google Tensor2Tensor using the Transformer Base model.

https://github.com/tensorflow/tensor2tensor

© Copyright 2019 Xilinx

Attention Mechanism

Associative Array or Content-Addressable Memory

Apple Red

Grass Green

Sky Blue

Key Value

© Copyright 2019 Xilinx

Attention Mechanism

What does this query match?

Apple Red

Grass Green

Sky Blue

Key Value

Grass

Query

© Copyright 2019 Xilinx

Attention Mechanism

Exact match between query and one of the keys

Apple Red

Grass Green

Sky Blue

Key Value

Grass

Query

© Copyright 2019 Xilinx

Attention Mechanism

Returns associated value. Each query is a one-hot vector.

Grass Green

Key Value

Grass

Query

© Copyright 2019 Xilinx

Attention in Neural Networks
Attention: Soft Associative Array

[235, 28, 35]

[30, 100, 14]

[74, 126, 207]

Key Value

[-0.2, 1.1, -0.9]

[0.4, 0.7, -1.1]

[-0.1, -1.2, 1.1]

© Copyright 2019 Xilinx

Attention in Neural Networks

[-0.2, 1.1, -0.9] [235, 28, 35]

[0.4, 0.7, -1.1] [30, 100, 14]

[-0.1, -1.2, 1.1] [74, 126, 207]

Key Value

What does this query match?

[-0.2, 1.1, -0.9]

Query

© Copyright 2019 Xilinx

Attention in Neural Networks

[235, 28, 35]

[30, 100, 14]

[74, 126, 207]

Key Value

Can we “soft-match?” Dot product measures similarity.

Query
Dot

Product

2.1

1.7

-2.3

[-0.2, 1.1, -0.9]

[0.4, 0.7, -1.1]

[-0.1, -1.2, 1.1]

[-0.2, 1.1, -0.9]

© Copyright 2019 Xilinx

Attention in Neural Networks

[235, 28, 35]

[30, 100, 14]

[74, 126, 207]

Key Value

Exponentiate

Query Exp

7.8

5.4

0.1

[-0.2, 1.1, -0.9]

[0.4, 0.7, -1.1]

[-0.1, -1.2, 1.1]

[-0.2, 1.1, -0.9]

© Copyright 2019 Xilinx

Attention in Neural Networks

[235, 28, 35]

[30, 100, 14]

[74, 126, 207]

Key Value

Normalize. Softmax!

Query Weight

58.9%

40.3%

0.76%

[-0.2, 1.1, -0.9]

[0.4, 0.7, -1.1]

[-0.1, -1.2, 1.1]

[-0.2, 1.1, -0.9]

© Copyright 2019 Xilinx

Attention in Neural Networks

[235, 28, 35]

[30, 100, 14]

[74, 126, 207]

Key Value

Weighted sum of values:

Query Weight

[151, 58, 28]

58.9%

40.3%

0.76%

[-0.2, 1.1, -0.9]

[0.4, 0.7, -1.1]

[-0.1, -1.2, 1.1]

[-0.2, 1.1, -0.9]

© Copyright 2019 Xilinx

Attention in Neural Networks

In matrix form for multiple queries in parallel hardware:

VKTQ

Attention (Q, K, V) = softmax()

Parallel Queries Key-Value Table

Need more softmax than typical vision neural networks.
Can add in ACAP/FPGA.

© Copyright 2019 Xilinx

Word Embeddings
Words represented as vectors (>500 components)
“You shall know a word by the company it keeps.”

Word analogy
is : was :: ? : were

is

was

were
C. Allen and T. Hospedales, “Analogies Explained: Towards Understanding Word Embeddings,” ICML 2019

http://proceedings.mlr.press/v97/allen19a/allen19a.pdf

© Copyright 2019 Xilinx

Word Embeddings

Word analogy
is : was :: ? : were

is

was

were

is - was

C. Allen and T. Hospedales, “Analogies Explained: Towards Understanding Word Embeddings,” ICML 2019

http://proceedings.mlr.press/v97/allen19a/allen19a.pdf

© Copyright 2019 Xilinx

Word Embeddings

Word analogy
is : was :: ? : were

is

was

were

is – was + were

is - was

C. Allen and T. Hospedales, “Analogies Explained: Towards Understanding Word Embeddings,” ICML 2019

http://proceedings.mlr.press/v97/allen19a/allen19a.pdf

© Copyright 2019 Xilinx

Word Embeddings

Word analogy
is : was :: are : were

is

was

were

is – was + were
≈are

C. Allen and T. Hospedales, “Analogies Explained: Towards Understanding Word Embeddings,” ICML 2019

http://proceedings.mlr.press/v97/allen19a/allen19a.pdf

© Copyright 2019 Xilinx

Word Embeddings

Word analogy
is : was :: are : were

Embedding analogy
is – was ≈ are – were

is

was

were

is – was + were
≈are

C. Allen and T. Hospedales, “Analogies Explained: Towards Understanding Word Embeddings,” ICML 2019

http://proceedings.mlr.press/v97/allen19a/allen19a.pdf

© Copyright 2019 Xilinx

Word Embeddings

Word analogy
is : was :: are : were

Embedding analogy
is – was ≈ are – were

is

was

were

is – was + were
≈are

C. Allen and T. Hospedales, “Analogies Explained: Towards Understanding Word Embeddings,” ICML 2019

Embeddings from unsupervised training

http://proceedings.mlr.press/v97/allen19a/allen19a.pdf

© Copyright 2019 Xilinx

Model Sizes

˃Embedding storage in Translation Networks
Transformer Base: ~32K × 512 fp32
OpenAI GPT-2: ~50K × 1600 fp32
Above examples considered small
Can convert fp32 to 8-bit or 16-bit data types

˃Model sizes (Number of parameters)
Transformer Base: 61M
Open AI GPT-2: 1.6B

˃ Instruction set and tensor SRAM tuned for random & burst HBM

˃Beam search
Transformer: Vaswani et al., “Attention Is All You Need,” NIPS 2017
OpenAI GPT-2: Radford et al., “Language Models are Unsupervised Multitask Learners,” OpenAI 2019
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

© Copyright 2019 Xilinx

Combining Vision and Language

© Copyright 2019 Xilinx

From Image Classification to Object Detection

© Copyright 2019 Xilinx

From Reading Comprehension and Object Detection to
Visual Reasoning

Is the bowl to the right of the green apple?

What type of fruit in the image is round?

Source: D. Hudson and C. Manning, “GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering,” arXiv 1902.09506

https://arxiv.org/pdf/1902.09506.pdf

© Copyright 2019 Xilinx

Era of Easy Scaling Over

Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018

Moore’s Law
Transistor improvement slows

Amdahl’s Law
Multicore not enough

Dennard Scaling
Power density rises

© Copyright 2019 Xilinx

Built to Last

˃Model commands after NN framework function calls
Linear layers: matrix multiplication & convolution
Attention is powerful and good for parallelism
Beam search in NLP: Amdahl’s Law
Activation functions, N-D pooling, layer normalization, NMS, LSTM, RNN, GRU, …

˃Compute is easy. Memory is hard and is key to a adaptable design.

˃Neural networks do merge, e.g. captioning, visual reasoning

˃ML moves fast. Plan instruction superset upfront for adaptability.

˃ Implement what you need today. Reconfigure HW to adapt to changes.

© Copyright 2019 Xilinx

Thank you

Adaptable.
Intelligent.

© Copyright 2019 Xilinx

	Accelerator Overlays:�Spec What You Want,�Build What You Need
	FPGA Overlay Accelerator
	FPGA Overlay Accelerator
	FPGA Overlay Accelerator
	Vision Neural Networks
	Image Classification
	ImageNet Challenge Accuracy Progress 2010—2017
	2015—2019: Faster, Smaller, More Accurate
	2015—2019: Faster, Smaller, More Accurate, and Machine-Made
	2015—2019: Faster, Smaller, More Accurate, and Machine-Made
	2015—2019: Faster, Smaller, More Accurate, and Machine-Made
	2015—2019: Faster, Smaller, More Accurate, and Machine-Made
	High-Throughput Linear Layers
	High-Throughput Linear Layers
	High-Throughput Linear Layers
	High-Throughput Linear Layers
	High-Throughput Linear Layers
	High-Throughput Linear Layers
	High-Throughput Linear Layers
	A Domain-Specific Architecture for Neural Networks
	A Domain-Specific Architecture for Neural Networks
	A Domain-Specific Architecture for Neural Networks
	A Domain-Specific Architecture for Neural Networks
	An Example Command
	A Domain-Specific Architecture for Neural Networks
	MxV: Don’t Leave Performance on the Table
	MxV: Don’t Leave Performance on the Table
	Compute-Efficient Neural Processor Overlay [FPGA 2019]
	A Domain-Specific Architecture for Neural Networks
	Uniform Quantization
	Uniform Quantization
	Uniform Quantization
	Uniform Quantization
	Uniform Quantization
	Uniform Quantization
	Uniform Quantization
	INT-to-Float
	INT-to-Float
	Which int8?
	Which int8?
	Which int8?
	In general…
	A Domain-Specific Architecture for Neural Networks
	UltraScale+™ Memory
	UltraScale+™ Memory
	Use FPGA URAM for Capacity and Bandwidth
	A Domain-Specific Architecture for Neural Networks
	A Domain-Specific Architecture for Neural Networks
	A Domain-Specific Architecture for Neural Networks
	2D Convolution: Tensor View
	2D Convolution: Tensor View
	2D Convolution: Tensor View
	2D Convolution: Tensor View
	2D Convolution: Tensor View
	2D Convolution: From Tensor to Flat View
	2D Convolution: Flat View
	2D Convolution: Flat View
	2D Convolution: Flat Silicon View
	2D Convolution: Flat Silicon View
	Interpreting Weights (Sort of)
	Reshaping Tensors to Matrices
	Reshaping Tensors to Matrices
	Reshaping Tensors to Matrices
	Reshaping Tensors to Matrices
	Reshaping Tensors to Matrices for Matrix Multipliers
	Reshaping Tensors to Matrices for Matrix Multipliers
	Applies to Any-Dimensional Convolution
	Applies to Any-Dimensional Convolution
	Applies to Any-Dimensional Convolution
	Applies to Any-Dimensional Convolution
	Applies to Any-Dimensional Convolution
	Applies to Any-Dimensional Convolution
	Applies to Any-Dimensional Convolution
	Decide What You Need to Optimize in Hardware
	Natural-Language Processing
	Reading Comprehension (SQuAD Dataset)
	Natural Language Processing: Reading Comprehension
	Stanford Question and Answering Dataset (SQuAD) 1.1
	Stanford Question and Answering Dataset (SQuAD) 1.1
	Stanford Question and Answering Dataset (SQuAD) 1.1
	SQuAD 2.0 (with Unanswerable Questions)
	Convolution vs. Attention
	Self-Attention
	Attention Mechanism
	Attention Mechanism
	Attention Mechanism
	Attention Mechanism
	Attention in Neural Networks
	Attention in Neural Networks
	Attention in Neural Networks
	Attention in Neural Networks
	Attention in Neural Networks
	Attention in Neural Networks
	Attention in Neural Networks
	Word Embeddings
	Word Embeddings
	Word Embeddings
	Word Embeddings
	Word Embeddings
	Word Embeddings
	Model Sizes
	Combining Vision and Language
	From Image Classification to Object Detection
	From Reading Comprehension and Object Detection to�Visual Reasoning
	Era of Easy Scaling Over
	Built to Last
	Thank you
	Slide Number 108

