
FPGA Accelerated

FPGA Placement

Shounak Dhar1, Love Singhal2,

Mahesh A. Iyer2, David Z. Pan1

Work supported by Intel Strategic Research Alliance (ISRA)

1

1 The University of Texas at Austin
2 Intel Corporation, San Jose

FPGA CAD Tool Flow

2

Synthesis Mapping Packing

Routing

RTL

Bitstream

Placement

Signoff Timing

Analysis

Retiming /

Physical

Synthesis
Major portion of runtime

♦Key metrics for FPGA competitive advantage:
› Clock frequency (Fmax)

› Power consumption

› Compile time
» Many NP-hard problems

› Scaling with size and complexity of modern designs

♦Focus: Accelerate FPGA placement

FPGA Placement

♦Determines locations of

components on a fixed-

floorplan chip with limited

resources (FPGA)

♦Concurrent optimization of

wirelength, timing, routing

congestion, etc.

3

Logical mapped

netlist

Physical implementation

Cell Net

Global

Placement

Clustering &

Legalization

Detailed

Placement

Synthesized

Netlist

Optimized

placed

netlist

Retiming / Physical Synthesis

Placement

Global Placement

♦Determines optimal (near-legal)

locations of cells

♦Analytical global optimization
› Optimize wirelength, timing, congestion

› 𝑜𝑏𝑗1 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑛)
› Optimized using gradient descent

♦Cell overlap minimization
› Divide chip into small bins

› 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 = 𝑑𝑒𝑚𝑎𝑛𝑑 − 𝑠𝑢𝑝𝑝𝑙𝑦

♦Upper-Lower bound optimization
› Iterate between global optimization and overlap minimization

› Global objective with deviation penalty:

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑛 + λ(∑ 𝑥𝑖 − 𝑥′ 2 + ∑ 𝑦𝑖 − 𝑦′ 2)

4

binFPGA

sites

Global Placement: Wirelength Model

5

♦HPWL (Half-Perimeter WireLength) is a

commonly used metric

♦HPWL is not differentiable
› Use a smooth approximation

♦𝛄 controls smoothness of approximation
› Higher 𝛄 → less smooth but more accurate

› Lower 𝛄 → better for optimization convergence

soft max soft min

net
x1 x2

x3

xHPWL = x2-x1

x4

Global Placement: Runtime Bottleneck

6

♦Wirelength gradient computation:
› Step 1: compute gradient w.r.t each pin of each net

› Simplify above equation by setting 𝛄=1 and scaling x’s

› Step 2: add pin gradients to get cell gradients
» Random memory accesses

» Fitting all location data on FPGA is a challenge

» Perform summation on CPU

net1

net2

net3

x1 x2

x3

x4

x5

x1 x2 x3 x2 x3 x4 x4 x5

+ + +

Baseline CPU Implementation

7

♦Calculate 4 terms:
›

♦Calculate for

each pin

♦Sum pin gradients

to get cell gradients

♦Multi-threaded and

vectorized

CPU+FPGA Implementation

8

♦Sort nets by degree
› Consider nets upto 16 pins

› Group nets into blocks by

degree

› Each block has ≤ 16 pins

› Padding to make each

block 16 pins

♦Compute pin gradients on

FPGA

♦Compute sum on CPU

Adder Tree

9

♦Multi-output adder tree to

compute sums of terms

› Sharing logic saves area

1 5 6 6 3 4

Benchmarks and Experimental Setup

10

♦Benchmarks
› ISPD 2016 FPGA placement

contest

Design # cells / 103 # nets / 103

FPGA01 105 105

FPGA02 166 167

FPGA03 421 428

FPGA04 423 430

FPGA05 425 433

FPGA06 704 713

FPGA07 707 716

FPGA08 717 725

FPGA09 867 876

FPGA10 952 961

FPGA11 845 851

FPGA12 1103 1111

♦Experimental setup
› FPGA: Intel® Arria®10

› CPU: Intel® Xeon®; 14 cores, 28 threads

› Shared virtual memory; Low latency communication

› Compiled using Intel® FPGA SDK for OpenCLTM and Intel®

Quartus® Prime Pro

Logic Register RAM DSP Fmax

37% 32% 22% 67% 227 MHz

Results: Wirelength and Runtime

11

♦2.1% global placement

wirelength improvement

vs UTPlaceF

♦3.03x wirelength gradient

speedup over CPU

♦2x global placement

speedup over CPU

Thank You

12

