Pyramid: Machine Learning Framework to Estimate the Optimal Timing and Resource Usage of a High-Level Synthesis Design

Hosein Mohamamdi Makrani, Farnoud Farahmand, Hossein Sayadi, Sara, Bondi, Sai Manoj PD, Houman Homayoun,

And Setareh Rafatirad

Presenter: Rashmi Agrawal

September, 2019

International Conference on Field-Programmable Logic and Applications (FPL 2019)

ACCELERATED, SECURE & ENERGY-EFFICIENT COMPUTING LAB (ASEEC)

HLS-Based Development and Benchmarking Flow

Static Timing Analysis using CAD Tools

Time consuming!
Not Optimal!

Solution

Goal of this Research

- We propose Pyramid, a framework that uses ML to accurately estimate the optimal performance and resource utilization of an HLS design
- For this purpose:
 - we first create a database of C-to- FPGA results from a diverse set of benchmarks using Minerva to find maximum clock frequency
 - We use the database to train an ensemble machine learning model to map the HLS-reported features to the results of Minerva

General ML Models

ML ESTIMATION ERRORS

D	evice	Artix7				Kintex7				Virtex7						
Res	source	LUT	FF	DSP	BRAM	Timing	LUT	FF	DSP	BRAM	Timing	LUT	FF	DSP	BRAM	Timing
	LR	27%	19%	22%	29%	18%	23%	25%	17%	21%	20%	29%	20%	21%	19%	24%
Тр	ANN	12%	17%	13%	14%	16%	10%	11%	19%	16%	15%	11%	14%	18%	14%	13%
11	SVM	22%	16%	19%	18%	19%	20%	22%	18%	15%	17%	24%	21%	16%	17%	18%
	RF	9%	17%	19%	14%	16%	15%	18%	12%	11%	17%	16%	20%	19%	15%	14%

ML models: regression model, artificial neural network (ANN), support vector machine (SVM), and random forest (RF)

Tuning technique: Grid Search

Average Error: LR=23%, ANN=14%, SVM=19%, and RF=15%

Ensemble Model

Key Idea: Cross Validation and Batch Training

Model Parameters: threshold for the accuracy and the maximum number of iterations

Evaluation Results

AVERAGE ERROR OF PYRAMID ESTIMATIONS

Devices	Arti	x7	Kinte	ex7	Virtex7		
Tragets	Resource	Timing	Resource Timing		Resource Timing		
Pyramid-TP	6.3%	3.8%	5.2%	4.1%	4.9%	4.4%	
Pyramid-TPA	4.8%	3.5%	4.7%	4.6%	4.8%	4.9%	

Average error of ML techniques for different benchmarks

Benchmark's category	Machine Learning		_	/Vid essing	Crypto.		Mathe.	
Targets	Res	Tim	Res	Tim	Res	Tim	Res	Tim
LR	29%	25%	17%	16%	38%	22%	11%	8%
ANN	17%	14%	13%	11%	19%	14%	8%	7%
SVM	22%	19%	18%	17%	23%	18%	10%	7%
RF	_16%_	_ 16%_	_14%_	_12%_	_ 20%	_15%_	9%_	7%
Ensemble	6%	5%	4%	3%	5%	4%	4%	3%

Questions

Thank you!

Supporting Slides

Inaccuracy of HLS Report

Relative RMSE =
$$\sqrt{\frac{1}{N} \sum_{n=1}^{N} (\frac{p_i - a_i}{a_i})^2 \times 100}$$

Devices	Artix7		Kintex7		Virtex7	
Tragets	Resource	Timing	Resource	Timing	Resource	Timing
HLS Estimate	91.7%	23.6%	112.5%	28.1%	88.4%	17.2%

Challenge of Hardware Evaluation

 $Minimum\ Clock = Target\ Clock - WNS$

Impact of Optimization on the Outcome of HLS: Average of 10 numbers

Using Minerva to Tackle Finding Optimal Results

Studied Applications

- Benchmarks: Machsuit, S2CBench, CHStone,
 Rosetta, and xfOpenCV
- Development suites:

Vivado and Vivado HLS version 2017.2

- Total number of applications: 90
- Applications' types:

Machine learning, Image/Video Processing Cryptography, and Mathematical

Data Collection

Feature Category	Brief Description	# features
Performance	Requested clock period, estimated clock period by HLS, Uncertainty	3
Resources	Utilization and availability of LUT, FF, DSP, and BRAM	36
Logic and arithmetic operation	Bitwidth/resource statistics of operations	29
Memory	Number of memory words/banks/bits;	2
Multiplexer	Multiplexer input size/bitwidth	2

- Total features: 72
- Data set: 60% for training, 20% for Validation, and 20% for testing (unseen data)