Low-Level Loop Analysis and Pipelining of Applications mapped to Xilinx FPGAs

Hossein Omidian and Guy Lemieux FPL conference

Problem

Prior Work:

> Feed-forward pipelining is easy Using report_pipeline_analysis

This Work:

> Pipelining of sequential loops

(1) Loop splitting optimization

Loops are not always obvious in the HLS/HDL

- Different designers working on different parts
- Can be created when using HLS

C1

Loop Analysis

Create a tool which can:

- Locate low-level loops in the netlist (after HLS, after logic synthesis)
- Identify and simplify 11 different loop patterns
- Automatically optimize ~8 loop patterns, user hints for ~3 patterns

Pattern	Method	Automated Mod.
1. Counter	Splitting	Yes
2. Combinational chain	Refactoring	Yes
3. Combinational chain	Combining	Yes
4. FSM	Early condition	Some
5. Triangle Accumulator	Cutting	Yes
6. Combined counters w/ controller	Cutting	Yes
7. Counter with a controller loop	Cutting	Yes
8. CRC lookalike	Combining	Yes
9. FIFO chain	Cutting	Yes
10. FIFO with read/write pointer	Cutting	No
11. FIFOs with a controller	Cutting	No

Pattern finding and simplifying

Loop from netlist

Loop simplified by the tool

Techniques

- > Splitting
- > Associative refactoring
- > Combining (C-slow retiming, saves area)
- > Early condition

Results

Fmax Optimization

Area+Fmax Optimization

Applied after physical synthesis process

- Fmax optimized: average Fmax of 714MHz (+57%)
- Area+Fmax optimized: Fmax +15% to +41%, Average area -18%

Adaptable.

© Copyright 2019 Xilinx