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Automated Semi-Custom approach

OpenFPGA: Context

• FPGAs’ ever-increasing role in modern computing systems

• Prototyping FPGAs is traditionally a cumbersome process
– Considerable manual layout (Groups of hardware engineers)

– Ad-hoc design tool development (Groups of software engineers)

– Year-long development cycles

• OpenFPGA: The First open-source FPGA IP generator
– Enable a rapid prototyping flow for FPGA IPs (the fabric)

– Customizable FPGA architecture and instant bitstream support

• Benefit to industry (eFPGA or specific application field)

• Benefit to academia (2x smaller and 3x faster than state-of-the-art)

Full-Custom Flow
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OpenFPGA: How is it different?

• VTR (Verilog To Routing): 
– Architecture exploration tool

• SymbiFlow: 
– Open source flow to generate bitstream from Verilog

– Target commercial FPGA

• OpenFPGA:
– Customizable architecture

– Bitstream related to the specified architecture

Each tool has its specific application
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OpenFPGA: Flow

Automate FPGA development using a semi-custom design approach
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Compared hierarchy

Low level customization

Basic element composition

Multimode support

XML Hardware Description Extension
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Enriched Circuit Level Description

• VPR • OpenFPGA
<architecture>

<models>
<layout>
<openfpga_settings>

<parameters>
<module_circuit_models>

<device>
<cblocks>
<switchlist>
<segmentlist>
<complexblocklist>

<pb_type>
<mode>

<interconnect>
<power>
<clocks>

<architecture>
<models>
<layout>
<device>
<switchlist>
<segmentlist>
<complexblocklist>

<pb_type>
<mode>

<interconnect>
<power>
<clocks>
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Circuit Level Customization

<circuit_model type=“mux” name=“mux_1lvl”>
<design_technology type=“cmos” structure=“one-level”/>
<input_buffer exist=“on” circuit_model_name=“inv1x”/>
<output_buffer exist=“off”/>
…

</circuit_model>

<circuit_model type=“ff” name=“dff” 
verilog_netlist=“ff.v”>
<port name=“D” size=”1”/>
<port name=“CLK” size=”1”/>
<port name=“Q” size=”1”/>

…
</circuit_model>

XML definition for a MUX to be auto-generated in Verilog

XML definition for a FF to 
be  mapped to standard 
or customized cell
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Composition of Basic Elements

• Multiplexers can have one-level, multi-level or tree-like 
structure

<circuit_model type="mux" name="mux 1level" prefix="mux 1level"> 
<design_technology type="cmos" structure="one-level"/> 
<input_buffer exist="on" circuit_model_name="inv1x"/> 
<output_buffer exist="on" circuit_model_name="tapdrive4"/> 
<pass_gate_logic circuit_model_name="tgate"/>
<port_type="input" prefix="in" size="4"/> 
<port_type="output" prefix="out" size="1"/> 
<port_type="sram" prefix="sram" size="4"/> 

</circuit_model> 

inv1x

tapdrive4

tgate
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Multimode support overview

• Separated XML description for different modes of a CLB

• Verilog and Bitstream will be automatically generated based on the 
physical implementation
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Example of 6-modes BLE with adders and fracturable LUTs 

© INS-UoU 2018   All rights reserved

University of Utah | Aurélien Alacchi | 10

• Operating mode

Multimode definition in XML

• Physical mode
<mode name="fle_phy" disabled_in_packing="true">
<pb_type name="frac_logic" num_pb="1">

ports definition
<pb_type name="frac_lut_6" blif_model=".frac_lut6" mode_bits="11" num_pb="1" 

circuit_model_name=”my_lut6">
ports definition

…

<mode name="n1_lut6">
<pb_type name="ble6" num_pb="1">

ports definition
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut" mode_bits="00"

physical_pb_type_name="frac_lut_6" >
ports definition

…
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Backend

Experimental methodology

Backend flow & Sign-off

Verification

Cell Optimization
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Experimental Methodology

• Technology: Commercial 40 nm

• Homogeneous FPGA Architecture:
– Fs = 3 

– Fc, in = 0.055 Fc, out = 0.1

– 1 Tile = 1 CLB + 1 SB + 2 CB

– 1 CLB = 10 FLE 

– 1 FLE = fract (LUT6 + LUT4) + 2* 1bit adder +2 * FF
– Channel width = 300: 83% length-4 + 13% length-16

• Chip utilization rate = 80%

• Baseline:
– Current state of the art [1]

– StratixIV + QuartusII
[1] B. Grady et al., Synthesizable Heterogeneous FPGA Fabrics, IEEE International Conference on FPT, 2018, pp. 1-8.
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Backend Flow & Performance Sign-off
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OpenFPGA: Verification Methods

Yosys

FPGA_x2p

HDL Simulator

FPGA Fabric 
Verilog netlist

Programmed FPGA 
Verilog netlist

Formal Simulator

Verilog 
benchmark

• Functional Verification
• Programmed FPGA
• Pristine FPGA

Bitstream

• Formal Verification
• 100% fault coverage on 

implementation

XML 
architecture
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Cell Optimization

MUX2 Configuration-Chain FF (CCFF)

• Cell library has a 
strong impact on the 
FPGA metrics: 90% 
of the FPGA area is 
made of CCFF and 
multiplexers

• Tgate-based MUX2 
is 2.5x smaller than 
from the SC library

• CCFF is 1.8x smaller 
than from the SC 
library

Few custom cells in a semi-custom flow can make the difference
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Analysis

Area

Timing
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Area Analysis

• Post-layout evaluation using a commercial 40nm node and a Stratix IV-like 
architecture

• Flow runs in 24h

• Using an optimized cell library (multiplexers, CCFF):
– 1.8x area reduction

20x20 FPGA

[1] B. Grady et al., Synthesizable Heterogeneous FPGA Fabrics, IEEE International Conference on FPT, 2018, pp. 1-8.
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Timing Analysis

• Post-layout evaluation using a commercial 40nm node and a Stratix IV-like 
architecture

• Flow runs in 24h

• Using an optimized cell library (multiplexers, CCFF):
– 3x delay reduction Path Type

Delay (ns)
Previous 
work [1]

OpenFPGA
(TT)

OpenFPGA 
(SS)

Stratix IV

5-LUT
0.46

(+70%)
0.14

(-48%)
0.26

(-3%)
0.27

(100%)

6-LUT
0.5

(+78%)
0.15

(-46%)
0.27

(-3%)
0.28

(100%)

1-bit Adder
0.7

(-9%)
0.54

(-30%)
1.00

(+30%)
0.77

(100%)

20-bit Adder
1.63

(+32%)
1.10
(-6%)

2.12
(+72%)

1.23
(100%)

Local Routing
0.27

(+58%)
0.12

(-30%)
0.23

(+35%)
0.17

(100%)

L-4 track
2.53

(+328%)
0.40

(-32%)
0.75

(+27%)
0.59

(100%)

L-16 track
4.02

(+294%)
0.78

(-23%)
1.55

(+52%)
1.02

(100%)

20x20 FPGA

Path Type
Delay (ns)

Previous 
work [1]

OpenFPGA
(TT)

5-LUT
0.46 0.14

6-LUT
0.5 0.15

1-bit Adder
0.7 0.54

20-bit Adder
1.63 1.10

Local Routing
0.27 0.12

L-4 track
2.53 0.40

L-16 track
4.02 0.78

[1] B. Grady et al., Synthesizable Heterogeneous FPGA Fabrics, IEEE International Conference on FPT, 2018, pp. 1-8.
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Where to progress?

• MCNC big20 suite benchmarks
– Average of 35% critical path reduction compare to previous work

– Average of 45% (30 + 15) critical path overhead compare to Stratix-IV

– Gap between academic and commercial EDA tools
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Previous work [9] OpenFPGA + 1/2-lvl MUXes + Opt.Cells Stratix-IV

Critical paths comparison
[1] B. Grady et al., Synthesizable Heterogeneous FPGA Fabrics, IEEE International Conference on FPT, 2018, pp. 1-8.

[1]
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Conclusion

© INS-UoU 2018   All rights reserved

University of Utah | Aurélien Alacchi | 21

OpenFPGA: Summary

• Fully functional XML to Prototype flow (FPGA-X2P) supporting 
homogenous multi-mode FPGA fabrics

– XML-to-Verilog generator

– Verilog-to-Bitstream generator

– Verilog testbenches for functionality/formal validation

• Automatic backend flow for homogenous FPGA

– 20×20 FPGA layout using a commercial 40nm node in 24h

– 2× area and 3× performance improvement over previous arts

• OpenFPGA alpha release with tutorials
– Github repository: https://github.com/LNIS-Projects/OpenFPGA

– Online documentation: https://openfpga.readthedocs.io/en/master/
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