
9/17/2019

1

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 1
09/11/2019 – Barcelona, Spain

OpenFPGA: An Opensource Framework Enabling
Rapid Prototyping of Customizable FPGAs

Xifan Tang, Edouard Giacomin, Aurélien Alacchi
Baudouin Chauvière and Pierre-Emmanuel Gaillardon

Laboratory of NanoIntegrated Systems (LNIS) – University of Utah, U.S.A

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 2

Automated Semi-Custom approach

OpenFPGA: Context

• FPGAs’ ever-increasing role in modern computing systems

• Prototyping FPGAs is traditionally a cumbersome process
– Considerable manual layout (Groups of hardware engineers)

– Ad-hoc design tool development (Groups of software engineers)

– Year-long development cycles

• OpenFPGA: The First open-source FPGA IP generator
– Enable a rapid prototyping flow for FPGA IPs (the fabric)

– Customizable FPGA architecture and instant bitstream support

• Benefit to industry (eFPGA or specific application field)

• Benefit to academia (2x smaller and 3x faster than state-of-the-art)

Full-Custom Flow

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 3

OpenFPGA: How is it different?

• VTR (Verilog To Routing):
– Architecture exploration tool

• SymbiFlow:
– Open source flow to generate bitstream from Verilog

– Target commercial FPGA

• OpenFPGA:
– Customizable architecture

– Bitstream related to the specified architecture

Each tool has its specific application

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 4

OpenFPGA: Flow

Automate FPGA development using a semi-custom design approach

Verilog Benchmark

Yosys

VPR

Extended XML-based
FPGA Architecture

Description

FPGA-Bitstream

FPGA-X2P

Standard/
Customized
Cell Library

FPGA-Verilog

STA

Performance
Sign-off

Sign-off FlowPrototyping Flow

Back-end tool

GDSII Layout
of FPGA Fabric

SDC
Fabric
Verilog

HDL
Simulator

Functionality
Verification

Bitstream
&Testbench

Formal
Tool

Formal
Verification

Verification
Flow

XML-based
FPGA Architecture

Description
Synthesis

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 5

Compared hierarchy

Low level customization

Basic element composition

Multimode support

XML Hardware Description Extension

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 6

Enriched Circuit Level Description

• VPR • OpenFPGA
<architecture>

<models>
<layout>
<openfpga_settings>

<parameters>
<module_circuit_models>

<device>
<cblocks>
<switchlist>
<segmentlist>
<complexblocklist>

<pb_type>
<mode>

<interconnect>
<power>
<clocks>

<architecture>
<models>
<layout>
<device>
<switchlist>
<segmentlist>
<complexblocklist>

<pb_type>
<mode>

<interconnect>
<power>
<clocks>

9/17/2019

2

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 7

Circuit Level Customization

<circuit_model type=“mux” name=“mux_1lvl”>
<design_technology type=“cmos” structure=“one-level”/>
<input_buffer exist=“on” circuit_model_name=“inv1x”/>
<output_buffer exist=“off”/>
…

</circuit_model>

<circuit_model type=“ff” name=“dff”
verilog_netlist=“ff.v”>
<port name=“D” size=”1”/>
<port name=“CLK” size=”1”/>
<port name=“Q” size=”1”/>

…
</circuit_model>

XML definition for a MUX to be auto-generated in Verilog

XML definition for a FF to
be mapped to standard
or customized cell

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 8

Composition of Basic Elements

• Multiplexers can have one-level, multi-level or tree-like
structure

<circuit_model type="mux" name="mux 1level" prefix="mux 1level">
<design_technology type="cmos" structure="one-level"/>
<input_buffer exist="on" circuit_model_name="inv1x"/>
<output_buffer exist="on" circuit_model_name="tapdrive4"/>
<pass_gate_logic circuit_model_name="tgate"/>
<port_type="input" prefix="in" size="4"/>
<port_type="output" prefix="out" size="1"/>
<port_type="sram" prefix="sram" size="4"/>

</circuit_model>

inv1x

tapdrive4

tgate

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 9

Multimode support overview

• Separated XML description for different modes of a CLB

• Verilog and Bitstream will be automatically generated based on the
physical implementation

2-LUT

L
U
T

4-LUT

4-LUT

+

Cin

4-LUT

4-LUT

+

Cout

in5
in4

in0
in1
in2
in3

M
U
X

FF
CLK

M
U
X

out0

REGin

2-LUT

FF
CLK

M
U
X

L
U
T

L
U
T

in6
in7

out1

M
U
X

REGout

2-LUT

2-LUT

(a) BLE Physical
Implementation

L
U
T

L
U
T

L
U
T

4-LUT

4-LUT

+

Cin

4-LUT

4-LUT

+

Cout

in5
in4

in0
in1
in2
in3

FF
CLK

M
U
X

out0

REGin

2-LUT

FF
CLK

L
U
T

L
U
T

in6
in7

out1

REGout

2-LUT

2-LUT

2-LUT

L
U
T

(a) BLE Physical
Implementation

L
U
T

L
U
T

L
U
T

M
U
X

M
U
X

M
U
X

4-LUT

4-LUT

+

Cin

4-LUT

4-LUT

+

Cout

in5
in4

in0
in1
in2
in3

FF
CLK

M
U
X

out0

REGin

2-LUT

FF
CLK

in6
in7

out1

REGout

2-LUT

2-LUT

2-LUT

(a) BLE Physical
Implementation

L
U
T

L
U
T

L
U
T

M
U
X

M
U
X

M
U
X

L
U
T

L
U
T

L
U
T

Example of 6-modes BLE with adders and fracturable LUTs

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 10

• Operating mode

Multimode definition in XML

• Physical mode
<mode name="fle_phy" disabled_in_packing="true">
<pb_type name="frac_logic" num_pb="1">

ports definition
<pb_type name="frac_lut_6" blif_model=".frac_lut6" mode_bits="11" num_pb="1"

circuit_model_name=”my_lut6">
ports definition

…

<mode name="n1_lut6">
<pb_type name="ble6" num_pb="1">

ports definition
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut" mode_bits="00"

physical_pb_type_name="frac_lut_6" >
ports definition

…

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 11

Backend

Experimental methodology

Backend flow & Sign-off

Verification

Cell Optimization

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 12

Experimental Methodology

• Technology: Commercial 40 nm

• Homogeneous FPGA Architecture:
– Fs = 3

– Fc, in = 0.055 Fc, out = 0.1

– 1 Tile = 1 CLB + 1 SB + 2 CB

– 1 CLB = 10 FLE

– 1 FLE = fract (LUT6 + LUT4) + 2* 1bit adder +2 * FF
– Channel width = 300: 83% length-4 + 13% length-16

• Chip utilization rate = 80%

• Baseline:
– Current state of the art [1]

– StratixIV + QuartusII
[1] B. Grady et al., Synthesizable Heterogeneous FPGA Fabrics, IEEE International Conference on FPT, 2018, pp. 1-8.

9/17/2019

3

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 13

Backend Flow & Performance Sign-off

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 14

OpenFPGA: Verification Methods

Yosys

FPGA_x2p

HDL Simulator

FPGA Fabric
Verilog netlist

Programmed FPGA
Verilog netlist

Formal Simulator

Verilog
benchmark

• Functional Verification
• Programmed FPGA
• Pristine FPGA

Bitstream

• Formal Verification
• 100% fault coverage on

implementation

XML
architecture

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 15

Cell Optimization

MUX2 Configuration-Chain FF (CCFF)

• Cell library has a
strong impact on the
FPGA metrics: 90%
of the FPGA area is
made of CCFF and
multiplexers

• Tgate-based MUX2
is 2.5x smaller than
from the SC library

• CCFF is 1.8x smaller
than from the SC
library

Few custom cells in a semi-custom flow can make the difference

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 16

Analysis

Area

Timing

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 17

Area Analysis

• Post-layout evaluation using a commercial 40nm node and a Stratix IV-like
architecture

• Flow runs in 24h

• Using an optimized cell library (multiplexers, CCFF):
– 1.8x area reduction

20x20 FPGA

[1] B. Grady et al., Synthesizable Heterogeneous FPGA Fabrics, IEEE International Conference on FPT, 2018, pp. 1-8.

0%

20%

40%

60%

80%

100%

Previous work OpenFPGA+Opt.
2:1 MUX

OpenFPGA +
Opt. Cells

Stratix-IVPrevious Work
[9]

OpenFPGA
(Std. Cells)

Stratix IV
OpenFPGA

(1/2-lvl MUXes)
+ Opt. Cells

30625

27160

17648

11050

-42%

+60%

m 2

m 2

m 2

m 2

-11%

[1]

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 18

Timing Analysis

• Post-layout evaluation using a commercial 40nm node and a Stratix IV-like
architecture

• Flow runs in 24h

• Using an optimized cell library (multiplexers, CCFF):
– 3x delay reduction Path Type

Delay (ns)
Previous
work [1]

OpenFPGA
(TT)

OpenFPGA
(SS)

Stratix IV

5-LUT
0.46

(+70%)
0.14

(-48%)
0.26

(-3%)
0.27

(100%)

6-LUT
0.5

(+78%)
0.15

(-46%)
0.27

(-3%)
0.28

(100%)

1-bit Adder
0.7

(-9%)
0.54

(-30%)
1.00

(+30%)
0.77

(100%)

20-bit Adder
1.63

(+32%)
1.10
(-6%)

2.12
(+72%)

1.23
(100%)

Local Routing
0.27

(+58%)
0.12

(-30%)
0.23

(+35%)
0.17

(100%)

L-4 track
2.53

(+328%)
0.40

(-32%)
0.75

(+27%)
0.59

(100%)

L-16 track
4.02

(+294%)
0.78

(-23%)
1.55

(+52%)
1.02

(100%)

20x20 FPGA

Path Type
Delay (ns)

Previous
work [1]

OpenFPGA
(TT)

5-LUT
0.46 0.14

6-LUT
0.5 0.15

1-bit Adder
0.7 0.54

20-bit Adder
1.63 1.10

Local Routing
0.27 0.12

L-4 track
2.53 0.40

L-16 track
4.02 0.78

[1] B. Grady et al., Synthesizable Heterogeneous FPGA Fabrics, IEEE International Conference on FPT, 2018, pp. 1-8.

9/17/2019

4

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 19

Where to progress?

• MCNC big20 suite benchmarks
– Average of 35% critical path reduction compare to previous work

– Average of 45% (30 + 15) critical path overhead compare to Stratix-IV

– Gap between academic and commercial EDA tools

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ex5p alu4 frisc apex4 elliptic pdc ex1010 misex3 seq spla

Previous work [9] OpenFPGA + 1/2-lvl MUXes + Opt.Cells Stratix-IV

Critical paths comparison
[1] B. Grady et al., Synthesizable Heterogeneous FPGA Fabrics, IEEE International Conference on FPT, 2018, pp. 1-8.

[1]

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 20

Conclusion

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 21

OpenFPGA: Summary

• Fully functional XML to Prototype flow (FPGA-X2P) supporting
homogenous multi-mode FPGA fabrics

– XML-to-Verilog generator

– Verilog-to-Bitstream generator

– Verilog testbenches for functionality/formal validation

• Automatic backend flow for homogenous FPGA

– 20×20 FPGA layout using a commercial 40nm node in 24h

– 2× area and 3× performance improvement over previous arts

• OpenFPGA alpha release with tutorials
– Github repository: https://github.com/LNIS-Projects/OpenFPGA

– Online documentation: https://openfpga.readthedocs.io/en/master/

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 22

Acknowledgment

This material is based on research sponsored by Air Force Research
Laboratory (AFRL) and Defense Advanced Research Projects Agency
(DARPA) under agreement number FA8650-18-2-7855. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of Air
Force Research Laboratory (AFRL) and Defense Advanced Research
Projects Agency (DARPA) or the U.S. Government.

Pierre-Emmanuel Gaillardon and Xifan Tang have financial interests in
the company ReRouting LLC, which manufactures RRAM-based
systems and provides engineering service.

© INS-UoU 2018 All rights reserved

University of Utah | Aurélien Alacchi | 23

Laboratory for NanoIntegrated Systems
Department of Electrical and Computer Engineering

MEB building – University of Utah – Salt Lake City – UT – USA

Thank you for your attention
Questions?

