
Tradeoffs for Accelerating Deep Neural Networks
TensorFlow to Cloud FPGAs

Stefan Hadjis and Kunle Olukotun
Computer Science Department

Stanford University



Summary

• Open-source TensorFlow  FPGA compiler
• Supports the Amazon EC2 FPGA instances
• Can run state-of-the-art DNNs specified in TensorFlow
• Built on top of Spatial, an open-source High-Level Design tool

FPGA



Overview

• Deep neural networks provide state-of-the-art 
results in many applications and industries



Overview

• Deep neural networks provide state-of-the-art 
results in many applications and industries

• FPGAs used to provide improved latency and 
power compared to GPUs
• Programmability matters because 

computations vary across DNNs and ML 
algorithms often change



Overview

• Deep neural networks provide state-of-the-art 
results in many applications and industries

• FPGAs used to provide improved latency and 
power compared to GPUs
• Programmability matters because 

computations vary across DNNs and ML 
algorithms often change

CGRA



Overview

• Problem 1: Complex process and many choices 
to design an accelerator for a given DNN

CGRA



Overview

• Problem 1: Complex process and many choices 
to design an accelerator for a given DNN
• Architecture Design (operation granularity, 

hardware algorithm, degree of specialization)

CGRA



Overview

• Problem 1: Complex process and many choices 
to design an accelerator for a given DNN
• Architecture Design (operation granularity, 

hardware algorithm, degree of specialization)
• Memory Management (on-chip vs. off-chip storage, 

data format in DRAM, parallelism in memory system)

CGRA



Overview

Large design space and 
complex implementation 

process

• Problem 1: Complex process and many choices 
to design an accelerator for a given DNN
• Architecture Design (operation granularity, 

hardware algorithm, degree of specialization)
• Memory Management (on-chip vs. off-chip storage, 

data format in DRAM, parallelism in memory system)

CGRA



Overview

• Problem 1: Complex process and many choices 
to design an accelerator for a given DNN

• DNN applications developed using high-level 
frameworks and libraries

CGRA



Overview

• Problem 1: Complex process and many choices 
to design an accelerator for a given DNN

• DNN applications developed using high-level 
frameworks and libraries

CGRA



Overview

• Problem 1: Complex process and many choices 
to design an accelerator for a given DNN

• DNN applications developed using high-level 
frameworks and libraries

• Problem 2: Efficiently running a high-level DNN 
model on a low-level target requires 
optimization at many levels of abstraction

CGRA



Overview

• Problem 1: Complex process and many choices 
to design an accelerator for a given DNN

• DNN applications developed using high-level 
frameworks and libraries

• Problem 2: Efficiently running a high-level DNN 
model on a low-level target requires 
optimization at many levels of abstraction

CGRA

Optimization 
at many 
levels



Overview

• Solution:

CGRA



Overview

• Solution:

CGRA



Overview

• Solution: An end-to-end toolchain to go from 
high-level DNN models to low-level hardware

• Input: TensorFlow model
• Output: Optimized FPGA design

Another IR
C / C++
Verilog

CGRA

DNN Hardware 
Optimizations

Spatial Compiler 
(Target-specific
optimizations)

DNN Graph 
Optimizations



Overview

• Solution: An end-to-end toolchain to go from 
high-level DNN models to low-level hardware

• Input: TensorFlow model
• Output: Optimized FPGA design

• Three Optimization Levels:

Another IR
C / C++
Verilog

CGRA

DNN Hardware 
Optimizations

Spatial Compiler 
(Target-specific
optimizations)

DNN Graph 
Optimizations



Overview

• Solution: An end-to-end toolchain to go from 
high-level DNN models to low-level hardware

• Input: TensorFlow model
• Output: Optimized FPGA design

• Three Optimization Levels:
• DNN Graph optimizations

Another IR
C / C++
Verilog

CGRA

DNN Hardware 
Optimizations

Spatial Compiler 
(Target-specific
optimizations)

DNN Graph 
Optimizations



Overview

• Solution: An end-to-end toolchain to go from 
high-level DNN models to low-level hardware

• Input: TensorFlow model
• Output: Optimized FPGA design

• Three Optimization Levels:
• DNN Graph optimizations
• Optimizations for DNN hardware accelerators

Another IR
C / C++
Verilog

CGRA

DNN Hardware 
Optimizations

Spatial Compiler 
(Target-specific
optimizations)

DNN Graph 
Optimizations



Overview

• Solution: An end-to-end toolchain to go from 
high-level DNN models to low-level hardware

• Input: TensorFlow model
• Output: Optimized FPGA design

• Three Optimization Levels:
• DNN Graph optimizations
• Optimizations for DNN hardware accelerators
• DNN-agnostic, target-specific optimizations

Another IR
C / C++
Verilog

CGRA

DNN Hardware 
Optimizations

Spatial Compiler 
(Target-specific
optimizations)

DNN Graph 
Optimizations



Overview

• Solution: An end-to-end toolchain to go from 
high-level DNN models to low-level hardware

• Input: TensorFlow model
• Output: Optimized FPGA design

• Three Optimization Levels:
• DNN Graph optimizations
• Optimizations for DNN hardware accelerators
• DNN-agnostic, target-specific optimizations

Another IR
C / C++
Verilog

CGRA

DNN Hardware 
Optimizations

Spatial Compiler 
(Target-specific
optimizations)

DNN Graph 
Optimizations

Uses “Spatial”, a language and compiler for 
application accelerators [PLDI 2018]



Overview

• Solution: An end-to-end toolchain to go from 
high-level DNN models to low-level hardware

• Input: TensorFlow model
• Output: Optimized FPGA design

• Three Optimization Levels:
• DNN Graph optimizations
• Optimizations for DNN hardware accelerators
• DNN-agnostic, target-specific optimizations

Another IR
C / C++
Verilog

CGRA

DNN Hardware 
Optimizations

Spatial Compiler 
(Target-specific
optimizations)

DNN Graph 
Optimizations

Uses “Spatial”, a language and compiler for 
application accelerators [PLDI 2018]



Overview

• Solution 1: Allows experimenting with 
architectures, algorithms and design 
parameters to explore large design spaces

• Solution 2: Performs required optimizations 
at each level of the stack so DNNs expressed 
in high-level frameworks can be deployed to 
a variety of hardware targets

Another IR
C / C++
Verilog

CGRA

DNN Hardware 
Optimizations

Spatial Compiler 
(Target-specific
optimizations)

DNN Graph 
Optimizations



Overview

Three Optimization Levels:
• DNN Graph optimizations
• Optimizations for DNN hardware 

accelerators
• DNN-agnostic, target-specific optimizations

Another IR
C / C++
Verilog

CGRA

DNN Hardware 
Optimizations

Spatial Compiler 
(Target-specific
optimizations)

DNN Graph 
Optimizations



Overview

Three Optimization Levels:
• DNN Graph optimizations
• Optimizations for DNN hardware 

accelerators
• DNN-agnostic, target-specific optimizations

Another IR
C / C++
Verilog

CGRA

DNN Hardware 
Optimizations

Spatial Compiler 
(Target-specific
optimizations)

DNN Graph 
Optimizations



Overview

Three Optimization Levels:
• DNN Graph optimizations
• Optimizations for DNN hardware 

accelerators
• DNN-agnostic, target-specific optimizations

Another IR
C / C++
Verilog

CGRA

DNN Hardware 
Optimizations

Spatial Compiler 
(Target-specific
optimizations)

DNN Graph 
Optimizations



• Goal: specify architecture layout of DNN on-chip

Convert DNN Graph  Spatial Language



• Goal: specify architecture layout of DNN on-chip

Convert DNN Graph  Spatial Language



• Goal: specify architecture layout of DNN on-chip

Convert DNN Graph  Spatial Language

Fusion



• Goal: specify architecture layout of DNN on-chip

Convert DNN Graph  Spatial Language

+Fusion Algorithm 
Tradeoffs



• Goal: specify architecture layout of DNN on-chip

Convert DNN Graph  Spatial Language

+

DRAM

+

Fusion Algorithm 
Tradeoffs

Assign Ops 
to hardware



• Goal: specify architecture layout of DNN on-chip

• Then generate Spatial Language program for this layout

Convert DNN Graph  Spatial Language

+

DRAM

Fusion Algorithm 
Tradeoffs

Assign Ops 
to hardware

+



Overview

Three Optimization Levels:
• DNN Graph optimizations
• Optimizations for DNN hardware 

accelerators
• DNN-agnostic, target-specific optimizations

Another IR
C / C++
Verilog

CGRA

DNN Hardware 
Optimizations

Spatial Compiler 
(Target-specific
optimizations)

DNN Graph 
Optimizations



Spatial Language / Compiler

• Language/compiler for application accelerators
• Uses hardware abstractions, e.g. like Verilog but at higher level of abstraction
• Makes experimenting with algorithms, architectures and design parameters 

easier (vs. HDL)

• Single source program can be mapped to many hardware targets
• Optimizes parameters for a target (e.g. operator latencies)
• Generates a C++ host program and Verilog design for the target FPGA



Current Support

• We currently support CNNs and MLPs
• Cloud multimedia applications (speech-to-text, ResNet object recognition)

• Working on broader application support and support for edge devices
• Long-term goal: to be an architecture exploration tool like VPR, but for 

machine learning accelerators
• Describe DNN / ML graph in a standard high-level format
• Perform necessary optimizations at each level to allow experimentation 

with different design strategies



More Information

• Spatial Language and Compiler:
spatial-lang.org

• TensorFlow to Cloud FPGAs:
github.com/stanford-ppl/spatial-multiverse FPGA


