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summary

* Open-source TensorFlow = FPGA compiler

e Supports the Amazon EC2 FPGA instances

e Can run state-of-the-art DNNs specified in TensorFlow

* Built on top of Spatial, an open-source High-Level Design tool
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Overview

* Problem 1: Complex process and many choices
to design an accelerator for a given DNN

 Architecture Design (operation granularity, Large design space and
hardware algorithm, degree of specialization) complex implementation
* Memory Management (on-chip vs. off-chip storage, process

data format in DRAM, parallelism in memory system)
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Overview

* Problem 1: Complex process and many choices
to design an accelerator for a given DNN

* DNN applications developed using high-level
frameworks and libraries

. XILINX. @@ FPGA

amazon BN [ cra | OO
webservices™ ‘




'

Overview TensorFlow pvs Src &

* Problem 1: Complex process and many choices
to design an accelerator for a given DNN

* DNN applications developed using high-level
frameworks and libraries

. XILINX. @@ FPGA

amazon N
webservices™ i CGRA

; \, ,2 Y




Overview

* Problem 1: Complex process and many choices
to design an accelerator for a given DNN

* DNN applications developed using high-level
frameworks and libraries

* Problem 2: Efficiently running a high-level DNN
model on a low-level target requires
optimization at many levels of abstraction
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* Problem 1: Complex process and many choices
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Overview

* Solution: An end-to-end toolchain to go from
high-level DNN models to low-level hardware
* Input: TensorFlow model
* Output: Optimized FPGA design
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* Solution: An end-to-end toolchain to go from
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Overview

* Solution 1: Allows experimenting with
architectures, algorithms and design
parameters to explore large design spaces

* Solution 2: Performs required optimizations
at each level of the stack so DNNs expressed
in high-level frameworks can be deployed to
a variety of hardware targets
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Overview

Three Optimization Levels:
* DNN Graph optimizations

* Optimizations for DNN hardware
accelerators

* DNN-agnostic, target-specific optimizations
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DNN Graph

Three Optimization Levels: Optimizations

* DNN Graph optimizations

* Optimizations for DNN hardware
accelerators

* DNN-agnostic, target-specific optimizations



Overview

Three Optimization Levels:

* DNN Graph optimizations

e Optimizations for DNN hardware ' DNN Hardware — . .

accelerators

" Optimizations

* DNN-agnostic, target-specific optimizations
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Convert DNN Graph = Spatial Language

* Goal: specify architecture layout of DNN on-chip
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Overview

Three Optimization Levels:
* DNN Graph optimizations

* Optimizations for DNN hardware
accelerators

* DNN-agnostic, target-specific optimizations Spatlal Compller
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Spatial Language / Compiler

* Language/compiler for application accelerators
* Uses hardware abstractions, e.g. like Verilog but at higher level of abstraction
* Makes experimenting with algorithms, architectures and design parameters
easier (vs. HDL)
* Single source program can be mapped to many hardware targets
* Optimizes parameters for a target (e.g. operator latencies)
* Generates a C++ host program and Verilog design for the target FPGA



Current Support

* We currently support CNNs and MLPs

e Cloud multimedia applications (speech-to-text, ResNet object recognition)
* Working on broader application support and support for edge devices

* Long-term goal: to be an architecture exploration tool like VPR, but for
machine learning accelerators
* Describe DNN / ML graph in a standard high-level format

* Perform necessary optimizations at each level to allow experimentation
with different design strategies



More Information

 Spatial Language and Compiler:

spatial-lang.org

 TensorFlow to Cloud FPGAs:

github.com/stanford-ppl/spatial-multiverse
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