TensorFlow to Cloud FPGAs
Tradeoffs for Accelerating Deep Neural Networks

Stefan Hadjis and Kunle Olukotun
Computer Science Department
Stanford University
Summary

• Open-source TensorFlow \(\rightarrow\) FPGA compiler
• Supports the Amazon EC2 FPGA instances
• Can run state-of-the-art DNNs specified in TensorFlow
• Built on top of Spatial, an open-source High-Level Design tool
Overview

• Deep neural networks provide state-of-the-art results in many applications and industries
Overview

• Deep neural networks provide state-of-the-art results in many applications and industries

• FPGAs used to provide improved latency and power compared to GPUs
 • Programmability matters because computations vary across DNNs and ML algorithms often change
Overview

• Deep neural networks provide state-of-the-art results in many applications and industries

• FPGAs used to provide improved latency and power compared to GPUs
 • Programmability matters because computations vary across DNNs and ML algorithms often change
Overview

• **Problem 1**: Complex process and many choices to design an accelerator for a given DNN
Overview

- **Problem 1**: Complex process and many choices to design an accelerator for a given DNN
 - **Architecture Design** (operation granularity, hardware algorithm, degree of specialization)
Overview

• **Problem 1**: Complex process and many choices to design an accelerator for a given DNN
 • Architecture Design (operation granularity, hardware algorithm, degree of specialization)
 • Memory Management (on-chip vs. off-chip storage, data format in DRAM, parallelism in memory system)
Overview

• **Problem 1**: Complex process and many choices to design an accelerator for a given DNN
 • **Architecture Design** (operation granularity, hardware algorithm, degree of specialization)
 • **Memory Management** (on-chip vs. off-chip storage, data format in DRAM, parallelism in memory system)

Large design space and complex implementation process
Overview

• **Problem 1**: Complex process and many choices to design an accelerator for a given DNN
• DNN applications developed using high-level frameworks and libraries
Overview

• **Problem 1**: Complex process and many choices to design an accelerator for a given DNN
• DNN applications developed using **high-level frameworks** and libraries
Overview

- **Problem 1**: Complex process and many choices to design an accelerator for a given DNN
- DNN applications developed using **high-level frameworks** and libraries
- **Problem 2**: Efficiently running a high-level DNN model on a low-level target requires optimization at many levels of abstraction
Overview

- **Problem 1**: Complex process and many choices to design an accelerator for a given DNN
- DNN applications developed using **high-level frameworks** and libraries
- **Problem 2**: Efficiently running a high-level DNN model on a low-level target requires optimization at many levels of abstraction
Overview

• Solution:
Overview

• Solution:
Overview

- **Solution:** An end-to-end toolchain to go from high-level DNN models to low-level hardware
 - Input: TensorFlow model
 - Output: Optimized FPGA design
Overview

• **Solution**: An end-to-end toolchain to go from high-level DNN models to low-level hardware
 • Input: TensorFlow model
 • Output: Optimized FPGA design
• Three Optimization Levels:
Overview

• **Solution:** An end-to-end toolchain to go from high-level DNN models to low-level hardware
 • Input: TensorFlow model
 • Output: Optimized FPGA design

• Three Optimization Levels:
 • DNN Graph optimizations
Overview

• **Solution:** An end-to-end toolchain to go from high-level DNN models to low-level hardware
 • Input: TensorFlow model
 • Output: Optimized FPGA design

• Three Optimization Levels:
 • DNN Graph optimizations
 • Optimizations for DNN hardware accelerators
Overview

• **Solution:** An end-to-end toolchain to go from high-level DNN models to low-level hardware
 • Input: TensorFlow model
 • Output: Optimized FPGA design

• Three Optimization Levels:
 • DNN Graph optimizations
 • Optimizations for DNN hardware accelerators
 • DNN-agnostic, target-specific optimizations
Overview

• **Solution:** An end-to-end toolchain to go from high-level DNN models to low-level hardware
 - Input: TensorFlow model
 - Output: Optimized FPGA design

• Three Optimization Levels:
 - DNN Graph optimizations
 - Optimizations for DNN hardware accelerators
 - DNN-agnostic, target-specific optimizations

Uses **“Spatial”**, a language and compiler for application accelerators [PLDI 2018]
Overview

- **Solution:** An end-to-end toolchain to go from high-level DNN models to low-level hardware
 - Input: TensorFlow model
 - Output: Optimized FPGA design

- Three Optimization Levels:
 - DNN Graph optimizations
 - Optimizations for DNN hardware accelerators
 - DNN-agnostic, target-specific optimizations

Uses “**Spatial**”, a language and compiler for application accelerators [PLDI 2018]
Overview

- **Solution 1:** Allows experimenting with architectures, algorithms and design parameters to **explore large design spaces**

- **Solution 2:** Performs required optimizations at **each level of the stack** so DNNs expressed in high-level frameworks can be deployed to a variety of hardware targets
Overview

Three Optimization Levels:
• DNN Graph optimizations
• Optimizations for DNN hardware accelerators
• DNN-agnostic, target-specific optimizations
Overview

Three Optimization Levels:

• **DNN Graph optimizations**

• Optimizations for DNN hardware accelerators

• DNN-agnostic, target-specific optimizations
Overview

Three Optimization Levels:

• DNN Graph optimizations
• **Optimizations for DNN hardware accelerators**
• DNN-agnostic, target-specific optimizations
Convert DNN Graph \rightarrow Spatial Language

- **Goal:** specify architecture layout of DNN on-chip
Goal: specify architecture layout of DNN on-chip

Convert DNN Graph \rightarrow Spatial Language
Convert DNN Graph → Spatial Language

• **Goal:** specify architecture layout of DNN on-chip

Fusion
Convert DNN Graph → Spatial Language

• **Goal:** specify architecture layout of DNN on-chip
Convert DNN Graph \(\rightarrow\) Spatial Language

- **Goal**: specify architecture layout of DNN on-chip
Convert DNN Graph \rightarrow Spatial Language

- **Goal**: specify architecture layout of DNN on-chip

- Then generate Spatial Language program for this layout
Overview

Three Optimization Levels:

• DNN Graph optimizations
• Optimizations for DNN hardware accelerators
• **DNN-agnostic, target-specific optimizations**
Spatial Language / Compiler

• Language/compiler for application accelerators
 • Uses hardware abstractions, e.g. like Verilog but at higher level of abstraction
 • Makes experimenting with algorithms, architectures and design parameters easier (vs. HDL)

• Single source program can be mapped to many hardware targets
 • Optimizes parameters for a target (e.g. operator latencies)
 • Generates a C++ host program and Verilog design for the target FPGA
Current Support

• We currently support CNNs and MLPs
 • Cloud multimedia applications (speech-to-text, ResNet object recognition)
• Working on broader application support and support for edge devices
• Long-term goal: to be an architecture exploration tool like VPR, but for machine learning accelerators
 • Describe DNN / ML graph in a standard high-level format
 • Perform necessary optimizations at each level to allow experimentation with different design strategies
More Information

• Spatial Language and Compiler: spatial-lang.org

• TensorFlow to Cloud FPGAs: github.com/stanford-ppl/spatial-multiverse