Reducing Dynamic Power in Streaming CNN Hardware Accelerators by Exploiting Computational Redundancies

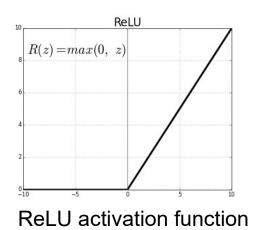
Duvindu Piyasena, Rukshan Wickramasinghe, Debdeep Paul, Siew-Kei Lam and Meiqing Wu

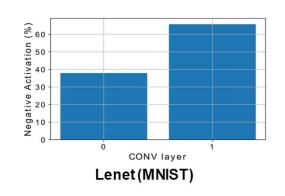
School of Computer Science and Engineering (SCSE) Nanyang Technological University (NTU) Singapore

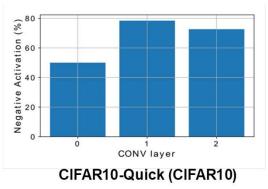
Email: siewkei_lam@pmail.ntu.edu.sg

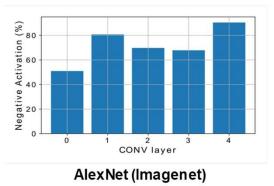
Motivation

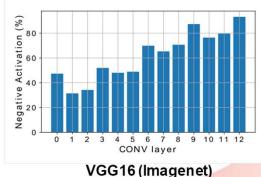
- ReLU discards negative convolution activations causing high computational redundancy in CNNs.
- Widely-used CNN models discard 30%-90% CONV activations in a given layer.





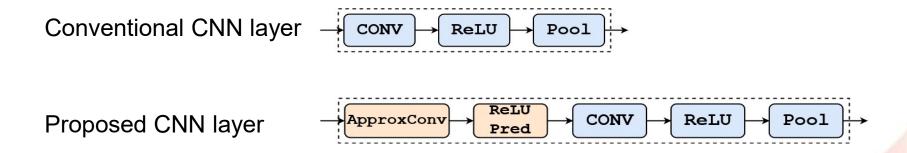






Proposed Method

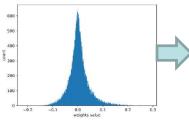
- We propose a method to eliminate the computational redundancies to save dynamic power in FPGA stream-based CNN accelerators
- Eliminates the computational redundancies arising from ReLU activation by predicting the positive/negative CONV activations using a low-cost approximation scheme.



Contribution

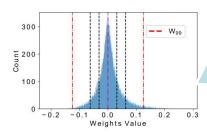
- We propose a hardware-friendly convolution approximation method that rely on power-of-two quantized weights.
- We show that the proposed methodology can be applied to various CNN models to significantly reduce the convolution operations, without compromising on the accuracy or retraining.
- We propose a streaming CNN FPGA accelerator that integrates our approximation method and demonstrate that notable power/energy savings can be achieved.

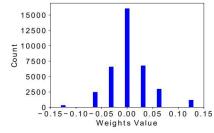
Proposed Method



1. Initialize

- 1. Saturate weights at 99^{th} percentile (= \textit{W}_{99})
- 2. Set $N_1 = 8$
- 3. Set $m = \log_2(W_{99})$





2. Perform Logarithmic Quantization

$$W_a = \{0, \pm (\frac{1}{2})^m, \pm (\frac{1}{2})^{m+1}, \dots, \pm (\frac{1}{2})^{m+N} L^{-1}\}$$

ApproxConv weights <--- W_a

3. Validation on modified model

4. Reduce quantization level count

$$NL = NL - 1$$

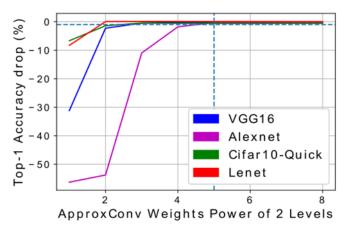
$$W_a = \{0, \pm (\frac{1}{2})^m, \pm (\frac{1}{2})^{m+1}, \ldots, \pm (\frac{1}{2})^{m+N_L}\}$$

Implementation

Quantization level search

Evaluated designs:

- Prop 1 : Approximation applied across all-layers
- Prop 2: Approximation applied across all-layers except 1st



Prop-1

Prop-2

Implementation

Implementation done in Verilog HDL for Lenet

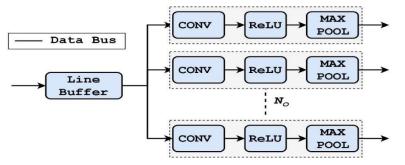
Operating Frequency : 100Mhz

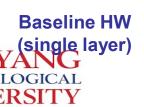
Device : Xilinx Virtex Ultrascale+ xcvu9p

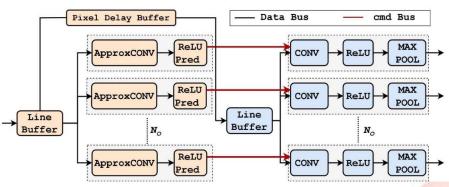
Synthesize tool : Xilinx Vivado 2018.3Simulator : Mentor Modelsim 10.3

Power Estimation Mode : Post-Synthesis Timing Simulations

 Power Gains achieved by clock gating CONV circuitry via ApproxConv predictions







Proposed HW (single layer)

Accuracy and Hardware Evaluations

- Compared with Signconnect proposed in previous work(*), which
 uses the sign of the weights to perform the approximations
 - SignConnect-1: Approximation applied across all-layers
 - SignConnect-2: Approximation applied across all-layers except 1st

TABLE I. Accuracy comparisons

Network	Baseline	SignConnect [17]		Proposed					
		SignConnect-1	SignConnect-2	Prop-1			Prop-2		
	Accuracy (Top-1/Top-5)	Accuracy (Top-1/Top-5)	Accuracy (Top-1/Top-5)	Level count	Weight Bitwidth	Accuracy (Top-1/Top-5)	Level count	Weight Bitwidth	Accuracy (Top-1/Top-5)
VGG16	68.15/88.14	39.62/64.34	40.11/65.49	3	3	67.94/87.65	3	3	67.67/87.67
AlexNet	56.57/79.92	27.08/50.75	32.98/58.01	5	4	56.3/79.5	3	3	55.77/79.35
CIFAR10-Quick	72.19/97.69	68.18/97.03	68.95/96.97	3	3	71.74/97.53	2	3	71.88/97.75
Lenet	99.08/100	98.97/100	99.02/100	2	3	99.099/100	1	2	99/100

		Baseline Prop1		Prop2		
				Change(%)		Change(%)
Dynamic	Total	2.2057	1.9565	10.79%	1.9263	12.17%
Power	Conv	1.2749	0.9357	18.91%	0.9509	19.00%
(W)	ApproxConv	0	0.0943	= 1	0.0779	-
(**)	Other	0.9308	0.9265	-0.46%	0.8975	2.76%
	LUT	627269	685650	9.31%	680867	8.54%
Resource	FF	297106	394420	32.75%	391079	31.63%
	BRAM	28	31	10.71%	30.5	8.92%
Latency (ns)		9130	9210	0.88%	9165	0.38%
Energy/Image(J)		2.00E-4	1.80E-04	10.03%	1.77E-04	11.83%

^{*} T. Ujiie, M. Hiromoto, and T. Sato, "Approximated prediction strategy for reducing power consumption of convolutional neural network processor," in 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 2016, pp. 870–876

Summary

- Methodology to determine the minimal number of powerof-two quantization levels for realizing lightweight convolution approximations that can predict the positive and negative convolution activations.
- Proposed a streaming CNN FPGA accelerator that integrates our approximation method.
- FPGA synthesis results show that the dynamic power can be reduced by 10-12% while maintaining good accuracy.

Thank You

