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Motivation
Two major problems:
• Place-and-Route are the two most time-

consuming steps in the FPGA CAD flow
• Placement solutions produced by a 

placement tool may be unroutable.
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Fast and Accurate Routability Prediction:
• Ability for placer to respond early and often to 

improve P&R runtimes and increase likelihood 
of producing a routable placement
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Placement Problem
• Given a circuit in the form of a netlist, map the components in the 

netlist onto locations (resources) on the FPGA such that:
• Minimize objectives  wirelength, delay, congestion, etc
• Subject to several constraints: based on architecture of FPGA

• Target: Xilinx Ultrascale
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Modern FPGA Architecture
• Architecture of modern FPGA 

devices imposes additional 
constraints on placement 
problem

• Modern FPGAs are 
heterogeneous

• Slice architecture imposes 
constraints on packing and 
placement
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Benchmarks
Design #LUTs (util) #Flops (util) #BRAMs #DSPs #control 

sets
Rent 

Exponent
FPGA-1 50K (9%) 55K (5%) 0 (0%) 0 (0%) 12 0.4

FPGA-2 100K (19%) 66K (6%) 100 (6%) 100 (13%) 121 0.4

FPGA-3 250K (47%) 170K (16%) 600 (35%) 500 (65%) 1281 0.6

FPGA-4 250K (47%) 172K (16%) 600 (35%) 500 (65%) 1281 0.7

FPGA-5 250K (47%) 174K (16%) 600 (35%) 500 (65%) 1281 0.8

FPGA-6 350K (65%) 352K (33%) 1000 (58%) 600 (78%) 2541 0.6

FPGA-7 350K (65%) 355K (33%) 1000 (58%) 600 (78%) 2541 0.7

FPGA-8 500K (93%) 216K (20%) 600 (35%) 500 (65%) 1281 0.7

FPGA-9 500K (93%) 366K (34%) 1000 (58%) 600 (78%) 2541 0.7

FPGA-10 350K (65%) 600K (56%) 1000 (58%) 600 (78%) 2541 0.6

FPGA-11 480K (89%) 363K (34%) 1000 (58%) 400 (52%) 2091 0.7

FPGA-12 500K (93%) 602K (56%) 600 (35%) 500 (65%) 1281 0.6
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• The 12 ISPD 2016 routing-aware 
placement contest circuits

• Our industrial partner, Xilinx Inc., 
synthesized an extra 360 
benchmarks using an internal netlist 
generation tool 

#LUTs #FFs #BRAMs #DSPs #CSETs #IOs Rent Exp

44K – 518K 52K – 630K 0 - 1035 0 - 620 11 - 2684 150 - 600 0.4 – 0.8



GPlace3.0 Flow 
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Congestion & WL across 3-phases of Placement

GPlace3.0 minimizes both wirelength and congestion over time, but 
without any knowledge of whether or not the solution is routable or not
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Benefits of Predicting Routability



Deep Learning & EDA

• The ability to accurately and efficiently estimate the routability of a circuit 
based on its placement is one of the most challenging tasks in the FPGA flow.

• Providing an informative feedback about the routability can help the 
placement tool to further enhance its optimization strategy.

• Questions:
 Is it possible to develop a framework that is placer independent and 

architecture independent?
Can Deep Learning be used to predict the routability of a placement?
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Machine Learning
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Machine learning is a type of Artificial Intelligence (AI) that 
can provide systems with the ability to learn without being 
explicitly programmed. 



Supervised Machine Learning

y = f(x)

• Training: given a training set of labeled examples {(x1,y1), …, (xN,yN)}, 
estimate the prediction function f() by minimizing the prediction error 
on the training set

• Testing: apply f() to a never before seen test example x and output 
the predicted value y = f(x)
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Deep Learning
• Deep learning (DL) is a subset of machine learning, it refers to having deeper 

hierarchy in a neural network.
• DL is capable of processing high dimensional data. 
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Shallow network Deep network



Convolutional Neural Network (CNN)
• CNN is the most commonly used form of DL because it can process an 

image and generate a meaningful response depending on the 
application.

• Convolutional filters are capable of capturing the spatial relationship 
between surrounding elements implicitly.
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Features
• Four features are calculated for each G-Cell (corresponds to a switch box) of the 

FPGA
• Each feature is designed to characterize the routing resource utilization of the 

switch
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f1 = WLPA

f2 = Pin density

f3 = NCPR5x5

f4 = NCPR9x9



Features
• Four features are calculated for each G-Cell (corresponds to a switch box) of the 

FPGA
• Each feature is designed to characterize the routing resource utilization of the 

switch
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Features
• Four features are calculated for each G-Cell (corresponds to a switch box) of the 

FPGA
• Each feature is designed to characterize the routing resource utilization of the 

switch
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MLCong 
Congestion Estimate [5]
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DLRoute: Data Collection
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DLRoute Framework
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DLRoute Framework for Routability Prediction
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• Gplace3.0 is used to place all the 372 Xilinx benchmarks, a placement file is saved after every 
iteration throughout the placement.

• A total of 26551 placements are generated and saved.
• The four features of congestion (same as MLCong) are extracted.

• The four feature of each placement are used to generate a heatmap.
• A total 26551 heatmaps are collected.
• Vivado router is used to route all the generated placement files.
• The labels of the heatmaps are determined by Vivado router, each heatmap has a binary label {0, 

1} that reflects the routability of this heatmap.

• The heatmaps are splitted into two sets, a training set that represents (70%)  of the total 
heatmaps, while the testing set represents (30%) of the total heatmaps.

• The training data is used to train the CNN model offline, while the testing set is used to assess the 
accuracy of the model.

• The CNN model with the best accuracy is saved to be used later in deployment stage.

• In deployment phase, the four features of congestion are extracted from a new placement file. 
Then, a heatmap is generated from these features.

• The saved CNN model with best performance is used to generate the routability label for this new 
placement.



CNN Architecture
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• A heat-map of size 480x168 represents the congestion in a placement is 
the input to the CNN

• A convolutional layer (CONV1) of 32 filters with size of (6,3) and stride of 
(2,1) with max-pooling is applied to the input heat map

• The activation function is ReLU
• The generated feature maps are 238x166 in dimension

• A convolutional layer (CONV2) of 32 filters with size of (3,3) and stride of 
(2,2) with max-pooling is applied to the output of CONV1 layer

• The activation function is ReLU
• The generated feature maps are 79x83 in dimension

• A convolutional layer (CONV3) of 32 filters with size of (3,3) and stride of 
(1,1) with max-pooling is applied to the output of CONV2 layer

• The activation function is ReLU
• The generated feature maps are 19x20 in dimension

• A convolutional layer (CONV4) of 32 filters with size of (3,3) and stride of 
(1,1) with max-pooling is applied to the output of CONV3 layer

• The activation function is ReLU
• The generated feature maps are 4x4 in dimension

• Flatten layer converts the two-dimensional feature map into a one-
dimensional vector

• Two fully-connected layers are applied to classify the vector of the flatten 
layer

• Each layer has 100 neurons
• The activation function is ReLU

• A binary label {0, 1} is generated by the output neuron in the output layer
• The activation function is sigmoid
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DLRoute: CNN Architecture

• The network takes a congestion heat map of size 480x168
• Four convolutional layers with a depth of 32 filters are used to extract 

features
• Two fully connected layers are used to classify the flattened vector of features
• A sigmoid output neuron generates a binary label of {0, 1} as routability label



DLRoute: Architecture Details
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# Architecture Parameters Output Volume # of  Parameters

1 CONV1: 32x(6,3), stride: (2,1) 238x166x32 1760

2 Maxpool: (3,2), stride: (3,2) 79x83x32 0

3 CONV2: 32x(3,3), stride: (2,2) 39x41x32 9248

4 Maxpool: (2,2), stride: (2,2) 19x20x32 0

5 CONV3: 32x(3,3), stride: (2,2) 9x9x32 9248

6 Maxpool: (2,2), stride: (2,2) 4x4x32 0

7 CONV4: 32x(3,3), stride: (1,1) 2x2x32 9248

8 Flatten 128 0

9 FC1: 100 (ReLU) 100 12900

10 FC2: 100 (ReLU) 100 10100

11 OUT: 1 (Sigmoid) 1 101

Total number of parameters 52605

Hyper-Parameters Training 
Time

Optimizer Learning 
Rate

Batch
Size

Epochs (minutes)

ADAM 0.0001 64 25 115.84

Best Hyper-Parameters

Optimized CNN Architecture



DLRoute: Underfitting/Overfitting
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The curves clearly show that the model is neither under-fitting nor  
over-fitting the data
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DLRoute: Performance Results

Accuracy Precision Sensitivity Specificity M Train Time Test Time

97.4% 0.961 0.980 0.970 0.876 115.8 (min) 7.8 (ms)
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Phase Accuracy Precision Sensitivity Specificity M

Global (Wirelength) Placement 0.988 0.955 0.993 0.986 0.967

Global(Congestion) Placement 0.958 0.944 0.962 0.954 0.915

Detailed Placement 0.983 0.987 0.995 0.826 0.864

Overall Performance

Performance on Each Placement Phase



DLRoute: Performance Results

Set Accuracy Precision Sensitivity Specificity M

FPGA1 0.962 0.968 0.986 0.864 0.876

FPGA2 0.975 0.980 0.990 0.907 0.913

FPGA3 0.988 0.987 0.996 0.970 0.971

FPGA4 0.976 0.964 0.988 0.966 0.953

FPGA5 0.990 0.947 0.991 0.990 0.963

FPGA6 0.987 0.974 0.992 0.983 0.972

FPGA7 0.899 0.813 0.888 0.903 0.774

FPGA8 0.987 0.985 0.992 0.979 0.973

FPGA9 0.991 0.965 0.993 0.991 0.973

FPGA10 0.969 0.913 0.990 0.960 0.929

FPGA11 0.988 0.981 0.981 0.991 0.972

FPGA12 0.979 0.992 0.909 0.998 0.937
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Performance on Each Benchmark
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DLRoute Case Study #1: Saving Router Time
• The proposed routability predictor can be used to avoid costly, 

and futile place-and-route iterations

• The savings in time ranges from 42.7% to 82.1%
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Placer
Routability CPU Time

Saving
Routable Non-Routable Routed Unrouted Total

UTPlace[8] 317 (85%) 55 (15%) 315473 308239 623712 49.4%

Ripple[9] 336 (90%) 36 (10%) 338626 253180 591806 42.7%

Vivado2015.4 262 (70%) 110 (30%) 209402 964381 1173783 82.1%

Vivado2018.1 327 (88%) 45 (12%) 527227 402704 929931 43.4%



DLRoute Case Study #2: Feedback to the Placer
• Integrating the CNN into a 

placement tool can be used to 
adaptively improve its 
optimization strategy.

• To be able to route highly-
congested placement, a 
feedback from the CNN is used 
to control the cell inflation 
parameters.

• The six highly-congested 
benchmarks are now routable.
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Benchmark
Routing Results

Wirelength CPU Time
(seconds)

FPGA5-6 9900742 2639

FPGA5-11 11814937 6634

FPGA5-16 11858397 5497

FPGA5-19 12069961 4897

FPGA5-26 12035954 3235

FPGA7-7 9540692 3095



Outline for Reminder of Talk

Outline

Background

Deep Learning Framework

Results

Conclusion

Case Study



Conclusions & Future Work

o A novel deep learning model for predicting FPGA routability 
during placement was proposed:

• DLRoute can be used at any stage during the placement
• DLRoute is capable of efficiently and accurately predicting the routability
• DLRoute achieves on average a 97% accuracy to predict the routability of 

a produced placement
• DLRoute can applied within any placement tool and it is architecture 

agnostic
oOur future work will focus on applying deep learning to further improve 

FPGA timing estimation and integrating it with the proposed routability 
model.
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Why Use Machine/Deep Learning for EDA?
Machine Learning has unique features:

• Data-driven: ML can learn from data to recognize complex patterns, insights 
and relationships in data

• No explicit programming: ML has the ability to extract knowledge and draw 
inferences from data 

• May assist in cutting CPU time: ML can replace time consuming steps in FPGA 
CAD flow. ML can efficiently and accurately replace congestion estimation and 
routability prediction tools.

• Provides guidance to the flow: ML is able to provide an informative feedback 
that can be used by an adaptive placement flow to enhance its performance 
and reduce CPU time
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The FPGA CAD Flow
• Hardware design done by modelling system in HDL
• Synthesis: netlist generated
• Placement: Components placed on chip
• Routing: Connecting signals routed
• Bitstream generated to program FPGA
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FPGA Placement: Challenges
• There are multiple resources 

constraints:
• Heterogeneity:  (LUT, FF, DSP, BRAM)
• LUT sharing constraints
• FF control-set constraints

• Multiple conflicting objectives: 
• Wirelength, Timing, Congestion, etc..

• High compile time:
• Designs complexity
• Millions of cells (logic blocks)
• Runtime takes more than a day
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Packing and Placement
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Complete Packing: LUT/FF  BLE  CLB

Placement

P
acking

LUT/FF

BLE

CLB

Traditional Pack-Place-Legalize:
• This technique tends to pack LUTs and FFs at an early stage of the 

optimization thus may be difficult to unpack CLBs at a later stage if 
congestion is encountered thus may lead to unroutable solutions!!.

VPR
V. Betz and J. Rose, “VPR: A new packing, placement 
and routing tool for FPGA research,” Field 
Programmable Logic and Applications, 1997, pp. 213-
212.
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Partial Packing: LUT/FF  BLE

Placement

Packing

LUT/FF

BLE

CLB

Place-SemiPack-Place-Legalize:
• More flexible than complete packing.
• However, Semi Packing tends to produce sub optimal solutions due to 

congestion encountered later in the placement stage.

RippleFPGA (2nd Place in ISPD16):
C. Pui, G. Chen, W. Chow, K. Lam, P. Tu, H. Zhang, E. Young, and B.
Yu. 2016. RippleFPGA: A routability-driven 883 placement for
large-scale heterogeneous FPGAs. In Proceedings of the
International Conference on Computer-Aided 884 Design. 1–8.
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No Packing (Flat Placement)

P
acking

LUT/FF

BLE

CLB

GPlace3.0 
Z. Abuowaimer, D. Maarouf, T. Martin, J. Foxcroft, G. Grewal, S. Areibi
and A. Vannelli.  GPlace3.0: Routability-Driven Analytic Placer for 
UltraScale Architectures, ACM Transactions on Design Automation of 
Electronics Systems, Volume 23, Issue 5, 2018, pp. 1-33. 

Place-Legalize:
• Flat placement allows LUTs and FFs to move 

throughout the placement flow thus unrestricting the 
solution space.

• However, may be slow!
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Analytical Placement

• Prior approaches to placement use simulated annealing.

• Recently, more attention has been directed towards analytic 
placement, which scales better on large problem instances
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• Analytic placement approach
1: Convert netlist to graph using Net model
2: Perform pin propagation
3: repeat
4:   solve non-linear equation system
5:   partition solution to enforce legality

constraints
6: until termination criteria satisfied



Experimental Setup
• GPlace was implemented using C, compiled using gcc (Red Hat 4.4.7-18) 

compiler.
• Binary executable files were provided from other teams for Ripple and 

UTplaceF placers
• Experiments were run on an Intel (Xeon CPU E3-1270 v5 @ 2.6 GHz) 

processor with 16 GB RAM.
• Placement solutions were routed using Xilinx Vivado 2015.4, with a patch

applied to make Vivado compatible with the modified Bookshelf Format 
used by both academic placement tools.

• The Scikit Learn machine learning library for the Python programming 
language was used to implement the various classification models.

• Keras and Tensorflow are used to develop the deep learning frameworks.
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Binary Classification Evaluation Metrics 1/2
• A confusion matrix is an N x N matrix, where N is the number of target labels 

(classes)

• It shows the number of correct and incorrect predictions made by the classifier 
compared to the actual outcomes (target labels) in the actual data

• E.g., binary classification problem (e.g., two classes 0|1 or T|F)

48

Target

Predicted T Predicted F

A
ct

u
al

ly
 

T
A

ct
u

al
ly

 
F

TP

TNFP

FN
Accuracy: the proportion of 
the total number of 
predictions that are correct
TN + TP / (TN + TP +FP + FN)

Model



Binary Classification Evaluation Metrics 2/2
1. Accuracy: TN + TP / (TN + TP +FP + FN)
2. Recall (Sensitivity): TP/(TP + FN)
3. Precision: TP/(TP + FP)
4. Specificity: TN/(TN + FP)
5. F1-Score: 2 x (Precision x Recall)/(Precision + Recall)
6. M =  (TN * TP - FP * FN ) /√ (TP + FP)(TP + FN)(TN + FP)(TN + FN)
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Data Size Comparison for MLRoute & DLRoute
MLRoute DLRoute

Total amount of data (train + test) 856 26551
• The data that was used to train, 

validate, and test DLRoute is 31x 
more the data of MLRoute
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The Presented Frameworks

Area Targeting in Placement Presented Frameworks
Congestion Estimation MLCong, DLCong
Routability Prediction MLRoute, DLRoute
Flow Selection MLSelect



Congestion Management

Congestion Management (Inflation followed by Spreading):

1. Identify switches that are highly congested

2. Inflate all cells (LUTS) that belong to this switch by a certain amount

3. Use a bipartitioning Legalization technique to spread and move LUTs to 

neighboring regions to relieve current switch from overflow and congestion
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GPlace3.0: LUT Inflation
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GPlace3.0 : LUT Inlation



Machine Learning in Electronic Design Automation (EDA)
• Three problems in FPGA 

placement flow that are targeted 
using machine learning and deep 
learning:

• Congestion estimation
• Routability prediction
• Flow selection
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