
A Deep Learning Framework to
Predict Routability for FPGA

Circuit Placement

Motivation
Two major problems:
• Place-and-Route are the two most time-

consuming steps in the FPGA CAD flow
• Placement solutions produced by a

placement tool may be unroutable.

2

HDL
(VHDL /
Verilog)

Synthesize

Netlist

Mapping

Placement

Routing

Bit
Stream

Bottleneck

Fast and Accurate Routability Prediction:
• Ability for placer to respond early and often to

improve P&R runtimes and increase likelihood
of producing a routable placement

Outline

Outline

Background

Deep Learning Framework

Results

Conclusions & Future work

Case Study

Placement Problem
• Given a circuit in the form of a netlist, map the components in the

netlist onto locations (resources) on the FPGA such that:
• Minimize objectives wirelength, delay, congestion, etc
• Subject to several constraints: based on architecture of FPGA

• Target: Xilinx Ultrascale

4

LUT DSP

BRAM

FF

LUT FF

FF

Netlist FPGA

Modern FPGA Architecture
• Architecture of modern FPGA

devices imposes additional
constraints on placement
problem

• Modern FPGAs are
heterogeneous

• Slice architecture imposes
constraints on packing and
placement

5

LUT6

LUT6

LUT6

LUT6

LUT6

LUT6

LUT6

FF
FF
FF
FF
FF
FF
FF
FF

SLICE

LUT6

FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
FF
FF
FF
FF

FF

Benchmarks
Design #LUTs (util) #Flops (util) #BRAMs #DSPs #control

sets
Rent

Exponent
FPGA-1 50K (9%) 55K (5%) 0 (0%) 0 (0%) 12 0.4

FPGA-2 100K (19%) 66K (6%) 100 (6%) 100 (13%) 121 0.4

FPGA-3 250K (47%) 170K (16%) 600 (35%) 500 (65%) 1281 0.6

FPGA-4 250K (47%) 172K (16%) 600 (35%) 500 (65%) 1281 0.7

FPGA-5 250K (47%) 174K (16%) 600 (35%) 500 (65%) 1281 0.8

FPGA-6 350K (65%) 352K (33%) 1000 (58%) 600 (78%) 2541 0.6

FPGA-7 350K (65%) 355K (33%) 1000 (58%) 600 (78%) 2541 0.7

FPGA-8 500K (93%) 216K (20%) 600 (35%) 500 (65%) 1281 0.7

FPGA-9 500K (93%) 366K (34%) 1000 (58%) 600 (78%) 2541 0.7

FPGA-10 350K (65%) 600K (56%) 1000 (58%) 600 (78%) 2541 0.6

FPGA-11 480K (89%) 363K (34%) 1000 (58%) 400 (52%) 2091 0.7

FPGA-12 500K (93%) 602K (56%) 600 (35%) 500 (65%) 1281 0.6

6

• The 12 ISPD 2016 routing-aware
placement contest circuits

• Our industrial partner, Xilinx Inc.,
synthesized an extra 360
benchmarks using an internal netlist
generation tool

#LUTs #FFs #BRAMs #DSPs #CSETs #IOs Rent Exp

44K – 518K 52K – 630K 0 - 1035 0 - 620 11 - 2684 150 - 600 0.4 – 0.8

GPlace3.0 Flow

7

Congestion & WL across 3-phases of Placement

GPlace3.0 minimizes both wirelength and congestion over time, but
without any knowledge of whether or not the solution is routable or not

8

9

Benefits of Predicting Routability

Deep Learning & EDA

• The ability to accurately and efficiently estimate the routability of a circuit
based on its placement is one of the most challenging tasks in the FPGA flow.

• Providing an informative feedback about the routability can help the
placement tool to further enhance its optimization strategy.

• Questions:
 Is it possible to develop a framework that is placer independent and

architecture independent?
Can Deep Learning be used to predict the routability of a placement?

10

Outline for Reminder of Talk

11

Outline

Background

Deep Learning Framework

Results

Conclusion

Case Study

Machine Learning

12

Machine
Learning
Machine
Learning

SupervisedSupervised UnsupervisedUnsupervised Semi-
Supervised

Semi-
Supervised

Reinforcement
Learning

Machine learning is a type of Artificial Intelligence (AI) that
can provide systems with the ability to learn without being
explicitly programmed.

Supervised Machine Learning

y = f(x)

• Training: given a training set of labeled examples {(x1,y1), …, (xN,yN)},
estimate the prediction function f() by minimizing the prediction error
on the training set

• Testing: apply f() to a never before seen test example x and output
the predicted value y = f(x)

13

label prediction
function

example
with features

Deep Learning
• Deep learning (DL) is a subset of machine learning, it refers to having deeper

hierarchy in a neural network.
• DL is capable of processing high dimensional data.

14

Shallow network Deep network

Convolutional Neural Network (CNN)
• CNN is the most commonly used form of DL because it can process an

image and generate a meaningful response depending on the
application.

• Convolutional filters are capable of capturing the spatial relationship
between surrounding elements implicitly.

15

Features
• Four features are calculated for each G-Cell (corresponds to a switch box) of the

FPGA
• Each feature is designed to characterize the routing resource utilization of the

switch

16

f1 = WLPA

f2 = Pin density

f3 = NCPR5x5

f4 = NCPR9x9

Features
• Four features are calculated for each G-Cell (corresponds to a switch box) of the

FPGA
• Each feature is designed to characterize the routing resource utilization of the

switch

17

𝑤 = 1

𝐻𝑃𝑊𝐿 = 5

#𝑔𝑐𝑒𝑙𝑙 = 12

Features
• Four features are calculated for each G-Cell (corresponds to a switch box) of the

FPGA
• Each feature is designed to characterize the routing resource utilization of the

switch

18

#𝑝𝑖𝑛𝑠 , = 3

𝑊 = 2

MLCong
Congestion Estimate [5]

WLPA

Pin Count

NCPR5x5

NCPR9x9

Congestion
Features (Local)

Placement
Congestion

Map

DLRoute: Overall Methodology

DLRoute
Routability Prediction

19

Routability
Label
{0,1}

DLRoute: Data Collection

20

DLRoute Framework

21

DLRoute Framework for Routability Prediction

22

• Gplace3.0 is used to place all the 372 Xilinx benchmarks, a placement file is saved after every
iteration throughout the placement.

• A total of 26551 placements are generated and saved.
• The four features of congestion (same as MLCong) are extracted.

• The four feature of each placement are used to generate a heatmap.
• A total 26551 heatmaps are collected.
• Vivado router is used to route all the generated placement files.
• The labels of the heatmaps are determined by Vivado router, each heatmap has a binary label {0,

1} that reflects the routability of this heatmap.

• The heatmaps are splitted into two sets, a training set that represents (70%) of the total
heatmaps, while the testing set represents (30%) of the total heatmaps.

• The training data is used to train the CNN model offline, while the testing set is used to assess the
accuracy of the model.

• The CNN model with the best accuracy is saved to be used later in deployment stage.

• In deployment phase, the four features of congestion are extracted from a new placement file.
Then, a heatmap is generated from these features.

• The saved CNN model with best performance is used to generate the routability label for this new
placement.

CNN Architecture

23

• A heat-map of size 480x168 represents the congestion in a placement is
the input to the CNN

• A convolutional layer (CONV1) of 32 filters with size of (6,3) and stride of
(2,1) with max-pooling is applied to the input heat map

• The activation function is ReLU
• The generated feature maps are 238x166 in dimension

• A convolutional layer (CONV2) of 32 filters with size of (3,3) and stride of
(2,2) with max-pooling is applied to the output of CONV1 layer

• The activation function is ReLU
• The generated feature maps are 79x83 in dimension

• A convolutional layer (CONV3) of 32 filters with size of (3,3) and stride of
(1,1) with max-pooling is applied to the output of CONV2 layer

• The activation function is ReLU
• The generated feature maps are 19x20 in dimension

• A convolutional layer (CONV4) of 32 filters with size of (3,3) and stride of
(1,1) with max-pooling is applied to the output of CONV3 layer

• The activation function is ReLU
• The generated feature maps are 4x4 in dimension

• Flatten layer converts the two-dimensional feature map into a one-
dimensional vector

• Two fully-connected layers are applied to classify the vector of the flatten
layer

• Each layer has 100 neurons
• The activation function is ReLU

• A binary label {0, 1} is generated by the output neuron in the output layer
• The activation function is sigmoid

24

DLRoute: CNN Architecture

• The network takes a congestion heat map of size 480x168
• Four convolutional layers with a depth of 32 filters are used to extract

features
• Two fully connected layers are used to classify the flattened vector of features
• A sigmoid output neuron generates a binary label of {0, 1} as routability label

DLRoute: Architecture Details

25

Architecture Parameters Output Volume # of Parameters

1 CONV1: 32x(6,3), stride: (2,1) 238x166x32 1760

2 Maxpool: (3,2), stride: (3,2) 79x83x32 0

3 CONV2: 32x(3,3), stride: (2,2) 39x41x32 9248

4 Maxpool: (2,2), stride: (2,2) 19x20x32 0

5 CONV3: 32x(3,3), stride: (2,2) 9x9x32 9248

6 Maxpool: (2,2), stride: (2,2) 4x4x32 0

7 CONV4: 32x(3,3), stride: (1,1) 2x2x32 9248

8 Flatten 128 0

9 FC1: 100 (ReLU) 100 12900

10 FC2: 100 (ReLU) 100 10100

11 OUT: 1 (Sigmoid) 1 101

Total number of parameters 52605

Hyper-Parameters Training
Time

Optimizer Learning
Rate

Batch
Size

Epochs (minutes)

ADAM 0.0001 64 25 115.84

Best Hyper-Parameters

Optimized CNN Architecture

DLRoute: Underfitting/Overfitting

26

The curves clearly show that the model is neither under-fitting nor
over-fitting the data

Outline for Reminder of Talk

Outline

Background

Deep Learning Framework

Results

Conclusion

Case Study

DLRoute: Performance Results

Accuracy Precision Sensitivity Specificity M Train Time Test Time

97.4% 0.961 0.980 0.970 0.876 115.8 (min) 7.8 (ms)

28

Phase Accuracy Precision Sensitivity Specificity M

Global (Wirelength) Placement 0.988 0.955 0.993 0.986 0.967

Global(Congestion) Placement 0.958 0.944 0.962 0.954 0.915

Detailed Placement 0.983 0.987 0.995 0.826 0.864

Overall Performance

Performance on Each Placement Phase

DLRoute: Performance Results

Set Accuracy Precision Sensitivity Specificity M

FPGA1 0.962 0.968 0.986 0.864 0.876

FPGA2 0.975 0.980 0.990 0.907 0.913

FPGA3 0.988 0.987 0.996 0.970 0.971

FPGA4 0.976 0.964 0.988 0.966 0.953

FPGA5 0.990 0.947 0.991 0.990 0.963

FPGA6 0.987 0.974 0.992 0.983 0.972

FPGA7 0.899 0.813 0.888 0.903 0.774

FPGA8 0.987 0.985 0.992 0.979 0.973

FPGA9 0.991 0.965 0.993 0.991 0.973

FPGA10 0.969 0.913 0.990 0.960 0.929

FPGA11 0.988 0.981 0.981 0.991 0.972

FPGA12 0.979 0.992 0.909 0.998 0.937

29

Performance on Each Benchmark

Outline for Reminder of Talk

30

Outline

Background

Deep Learning Framework

Results

Conclusion

Case Study

DLRoute Case Study #1: Saving Router Time
• The proposed routability predictor can be used to avoid costly,

and futile place-and-route iterations

• The savings in time ranges from 42.7% to 82.1%

31

Placer
Routability CPU Time

Saving
Routable Non-Routable Routed Unrouted Total

UTPlace[8] 317 (85%) 55 (15%) 315473 308239 623712 49.4%

Ripple[9] 336 (90%) 36 (10%) 338626 253180 591806 42.7%

Vivado2015.4 262 (70%) 110 (30%) 209402 964381 1173783 82.1%

Vivado2018.1 327 (88%) 45 (12%) 527227 402704 929931 43.4%

DLRoute Case Study #2: Feedback to the Placer
• Integrating the CNN into a

placement tool can be used to
adaptively improve its
optimization strategy.

• To be able to route highly-
congested placement, a
feedback from the CNN is used
to control the cell inflation
parameters.

• The six highly-congested
benchmarks are now routable.

32

Benchmark
Routing Results

Wirelength CPU Time
(seconds)

FPGA5-6 9900742 2639

FPGA5-11 11814937 6634

FPGA5-16 11858397 5497

FPGA5-19 12069961 4897

FPGA5-26 12035954 3235

FPGA7-7 9540692 3095

Outline for Reminder of Talk

Outline

Background

Deep Learning Framework

Results

Conclusion

Case Study

Conclusions & Future Work

o A novel deep learning model for predicting FPGA routability
during placement was proposed:

• DLRoute can be used at any stage during the placement
• DLRoute is capable of efficiently and accurately predicting the routability
• DLRoute achieves on average a 97% accuracy to predict the routability of

a produced placement
• DLRoute can applied within any placement tool and it is architecture

agnostic
oOur future work will focus on applying deep learning to further improve

FPGA timing estimation and integrating it with the proposed routability
model.

34

Email: aalhyari@uoguelph.ca

References
[1] Xilinx. [n.d.]. UltraScale Architecture Configurable Logic Block User Guide. Retrieved
from: http://www.xilinx.com/ support/documentation/user_guides/ug574-ultrascale-
clb.pdf.
[2] Z. Abuowaimer, D. Maarouf, T. Martin, J. Foxcroft, G. Grewal, S. Areibi, and A. Vannelli,
“GPLace3.0: Routability Driven Analytic Placer for UltraScale FPGA Architectures,” ACM
Transaction on Design Automation of Electronic Systems, vol. 23, no. 5, pp. 66:1–66:3,
August 2018.
[3] Xilinx. [n.d.]. ISPD 2016 Routability-Driven FPGA Placement Contest. Retrieved from:
http://www.ispd.cc/contests/ 16/ispd2016_contest.html.
[4] https://www.xilinx.com/products/silicon-devices/fpga.html
[5] D. Maarouf, A. Alhyari, Z. Abuowaimer, T. Martin, A. Gunter, G. Grewal, S. Areibi, and
A. Vannelli, 2018, August. Machine-learning based congestion estimation for modern
fpgas. In 2018 28th International Conference on Field Programmable Logic and
Applications (FPL) (pp. 427-4277). IEEE.

36

Supplementary Slides

Why Use Machine/Deep Learning for EDA?
Machine Learning has unique features:

• Data-driven: ML can learn from data to recognize complex patterns, insights
and relationships in data

• No explicit programming: ML has the ability to extract knowledge and draw
inferences from data

• May assist in cutting CPU time: ML can replace time consuming steps in FPGA
CAD flow. ML can efficiently and accurately replace congestion estimation and
routability prediction tools.

• Provides guidance to the flow: ML is able to provide an informative feedback
that can be used by an adaptive placement flow to enhance its performance
and reduce CPU time

38

Traditional FPGA CAD Flow
HDL
(VHDL /
Verilog)

Synthesize

Mapped
Netlist

Mapping

Placement

Routing

Bit
Stream

Packing

Technology Independent logic optimization

Technology Dependent Optimization

a b c d e

f

a
b
c

f

Design
Entry

39

The FPGA CAD Flow
• Hardware design done by modelling system in HDL
• Synthesis: netlist generated
• Placement: Components placed on chip
• Routing: Connecting signals routed
• Bitstream generated to program FPGA

40

Synthesis Placement Routing bitstream
Bitstream
generationHDL

FPGA Placement: Challenges
• There are multiple resources

constraints:
• Heterogeneity: (LUT, FF, DSP, BRAM)
• LUT sharing constraints
• FF control-set constraints

• Multiple conflicting objectives:
• Wirelength, Timing, Congestion, etc..

• High compile time:
• Designs complexity
• Millions of cells (logic blocks)
• Runtime takes more than a day

41

Timing

CongestionWirelength

Need to introduce
Intelligence in FPGA

Placement

Packing and Placement

42

HDL
(VHDL /
Verilog)

Synthesize

Mapped
Netlist

Mapping

Placement

Routing

Bit
Stream

Properly managing the interdependence between
packing and placement is key to optimizing
wirelength, timing, and congestion!

Packing

Placement
Objectives

Timing

CongestionWirelength

Complete Packing: LUT/FF BLE CLB

Placement

P
acking

LUT/FF

BLE

CLB

Traditional Pack-Place-Legalize:
• This technique tends to pack LUTs and FFs at an early stage of the

optimization thus may be difficult to unpack CLBs at a later stage if
congestion is encountered thus may lead to unroutable solutions!!.

VPR
V. Betz and J. Rose, “VPR: A new packing, placement
and routing tool for FPGA research,” Field
Programmable Logic and Applications, 1997, pp. 213-
212.

43

Partial Packing: LUT/FF BLE

Placement

Packing

LUT/FF

BLE

CLB

Place-SemiPack-Place-Legalize:
• More flexible than complete packing.
• However, Semi Packing tends to produce sub optimal solutions due to

congestion encountered later in the placement stage.

RippleFPGA (2nd Place in ISPD16):
C. Pui, G. Chen, W. Chow, K. Lam, P. Tu, H. Zhang, E. Young, and B.
Yu. 2016. RippleFPGA: A routability-driven 883 placement for
large-scale heterogeneous FPGAs. In Proceedings of the
International Conference on Computer-Aided 884 Design. 1–8.

44

No Packing (Flat Placement)

P
acking

LUT/FF

BLE

CLB

GPlace3.0
Z. Abuowaimer, D. Maarouf, T. Martin, J. Foxcroft, G. Grewal, S. Areibi
and A. Vannelli. GPlace3.0: Routability-Driven Analytic Placer for
UltraScale Architectures, ACM Transactions on Design Automation of
Electronics Systems, Volume 23, Issue 5, 2018, pp. 1-33.

Place-Legalize:
• Flat placement allows LUTs and FFs to move

throughout the placement flow thus unrestricting the
solution space.

• However, may be slow!

45

Analytical Placement

• Prior approaches to placement use simulated annealing.

• Recently, more attention has been directed towards analytic
placement, which scales better on large problem instances

46

• Analytic placement approach
1: Convert netlist to graph using Net model
2: Perform pin propagation
3: repeat
4: solve non-linear equation system
5: partition solution to enforce legality

constraints
6: until termination criteria satisfied

Experimental Setup
• GPlace was implemented using C, compiled using gcc (Red Hat 4.4.7-18)

compiler.
• Binary executable files were provided from other teams for Ripple and

UTplaceF placers
• Experiments were run on an Intel (Xeon CPU E3-1270 v5 @ 2.6 GHz)

processor with 16 GB RAM.
• Placement solutions were routed using Xilinx Vivado 2015.4, with a patch

applied to make Vivado compatible with the modified Bookshelf Format
used by both academic placement tools.

• The Scikit Learn machine learning library for the Python programming
language was used to implement the various classification models.

• Keras and Tensorflow are used to develop the deep learning frameworks.

47

Binary Classification Evaluation Metrics 1/2
• A confusion matrix is an N x N matrix, where N is the number of target labels

(classes)

• It shows the number of correct and incorrect predictions made by the classifier
compared to the actual outcomes (target labels) in the actual data

• E.g., binary classification problem (e.g., two classes 0|1 or T|F)

48

Target

Predicted T Predicted F

A
ct

u
al

ly

T
A

ct
u

al
ly

F

TP

TNFP

FN
Accuracy: the proportion of
the total number of
predictions that are correct
TN + TP / (TN + TP +FP + FN)

Model

Binary Classification Evaluation Metrics 2/2
1. Accuracy: TN + TP / (TN + TP +FP + FN)
2. Recall (Sensitivity): TP/(TP + FN)
3. Precision: TP/(TP + FP)
4. Specificity: TN/(TN + FP)
5. F1-Score: 2 x (Precision x Recall)/(Precision + Recall)
6. M = (TN * TP - FP * FN) /√ (TP + FP)(TP + FN)(TN + FP)(TN + FN)

49

Data Size Comparison for MLRoute & DLRoute
MLRoute DLRoute

Total amount of data (train + test) 856 26551
• The data that was used to train,

validate, and test DLRoute is 31x
more the data of MLRoute

50

The Presented Frameworks

Area Targeting in Placement Presented Frameworks
Congestion Estimation MLCong, DLCong
Routability Prediction MLRoute, DLRoute
Flow Selection MLSelect

Congestion Management

Congestion Management (Inflation followed by Spreading):

1. Identify switches that are highly congested

2. Inflate all cells (LUTS) that belong to this switch by a certain amount

3. Use a bipartitioning Legalization technique to spread and move LUTs to

neighboring regions to relieve current switch from overflow and congestion

52

GPlace3.0: LUT Inflation

53

GPlace3.0 : LUT Inlation

Machine Learning in Electronic Design Automation (EDA)
• Three problems in FPGA

placement flow that are targeted
using machine learning and deep
learning:

• Congestion estimation
• Routability prediction
• Flow selection

55

