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Time-to-Solution
• Time-to-Solution is an important performance metric

• Includes everything to get all (one to many) needed results
• E.g., design, implementation, validation, manufacturing, deployment, compilation, and 

running times
• Time-to-Solution includes different components depending on approach

• E.g., software does not include processor development
• E.g., ASIC includes silicon design and implementation

• Only if many runs are performed, development time is amortized

• Much of the published work focuses only on kernel run time

• Amdahl's Law is applicable to the total solution
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FPGAs High Perf, Slow Development
• Modern FPGAs can achieve industry 

leading performance [1]
• Requires high specialization

• Highly-specialized solutions often 
require long development time

• Time-to-Solution may be longer than a 
fast-to-develop even though slower-
when-run solution

• Fast dev, reasonable perf solutions 
used until specialized solution is 
available

• May make optimal performance 
solution unnecessary

3

Specialized FPGA solution
Combined FPGA solution
Initially faster solution

[1] Chung, et al. Serving DNNs in Real Rime at Datacenter Scale with Project Brainwave



Solution:
Specialized
Overlays

4[2] Kadi, Janssen, and Huebner. FGPU: An SIMT-Architecture for FPGAs
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Outline

• Time-to-Solution

• PDL-FGPU Architecture and Case Study Workload

• Results

• On-Going Work and Conclusion

5



Approach
• Start with FGPU [2]

• Open-source soft GPU programmed with OpenCL-based toolchain

• Specialize FGPU for Persistent RNNs to improve performance 

• Target Intel Stratix 10 GX 2800
• 933,120 ALMs
• 5,760 DSPs (9.2 FP32 TFLOPS)
• 11,721 M20Ks (117.2 TB/s BW)
• 1 GHz
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[2] Kadi, Janssen, and Huebner. FGPU: An SIMT-Architecture for FPGAs



Architecture
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Architecture
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Specialized Macro: Dot
dot acc, vec, shr_ptr, shr_off

Specialized Scalar: Act
sigmoid dest, src

tanh    dest, src

relu dest, src



Persistent RNN Algorithm
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Persistent RNN Data Placement
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Outline

• Time-to-Solution

• PDL-FGPU Architecture and Case Study Workload

• Results

• On-Going Work and Conclusion
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Case Study Workloads
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Algorithm Precision Matrix Size Vector Size Iters. Batch

RNN (skip input) FP32 1024x1024 1024 256 1

RNN (skip input) INT8 2048x2048 2048 256 1

RNN (skip input) INT4 4096x4096 4096 256 1

RNN (linear input) FP32 1024x1024 1024 256 1

LSTM FP32 512x512 512 256 1

GRU FP32 512x512 512 256 1

Lines of Code Engr. Time

82 Few hrs

75 Few hrs

81 Few hrs

93 Few hrs

157 < 1 day

139 < 1 day

development effort



PDL-FGPU vs FGPU: Cycles
• One to three orders of 

magnitude performance 
improvement over baseline

• 55-727x speedup in single 
precision and low-precision

• Major reasons for difference
(85x total on skip input RNN FP32)
• Vector dot product engine (36x)
• Keeping weights on-chip (1.7x)
• Better memory scheduling (1.3x)
• Improved inter-thread 

communication (1.05x)
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PDL-FGPU vs FGPU: Cycles—Non-PDL
• Generality maintained at close to 

the same performance
• Cycle reduction mostly due to 

memory controller scheduling
• 6% fewer cycles on average

• Execution time increase due to 
reduced clock frequency
• 15% slowdown on average
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PDL-FGPU vs FGPU: ALM Utilization
• FP32 mode ~1.5x ALM consumption

• Efficiently leveraged DSPs and on-chip 
RAM

• Low precision mode has higher ALM 
consumption

• Low precision dot product functional 
units mapped into ALMs

(at submission time)
• Improved by packing into DSPs

(in newer versions)

Note: Full FP32 configuration supports all single precision 
function units: fadd, fmul, fdiv, etc. Each unit can be disabled 
to save area/improve frequency but requires Quartus 
compilation.
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PDL-FGPU vs V100: Execution Time
• 3-7x slower than Nvidia V100

• For measured problems and sizes

• Performance gap factors
• 5-6x slower frequency

• ~280 MHz vs ~1500 MHz
• Fewer floating-point units

• More DSPs available on S10 than used

Note: cuDNN only supported FP32 kernels at 
submission time.
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PDL-FGPU vs V100: Throughput Utilization
• PDL-FGPU is 2-3x higher in 

throughput utilization than 
Nvidia due to higher 
specialization

• Throughput utilization can be 
further improved by increasing 
FPGA resource utilization
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Outline

• Time-to-Solution

• PDL-FGPU Architecture and Case Study Workload

• Results

• On-Going Work and Conclusion
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On-Going Work
• Continue to optimize

• Increase number of CUs
• Increase frequency
• Improve code generation

• Compare with other OpenCL, HLS, and overlay solutions
• Target other domains
• Improve usability
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Conclusions
• Time-to-Solution is an important (but often overlooked) metric
• Using different implementations at different times can improve 

overall Time-to-Solution
• Programmability speeds up development

• Programmable solutions allows quick iteration for functional correctness
• Domain-specific programmable solutions can minimize runtime

• Highly-specialized solution maximizes performance once available

• Domain-specific programmable solutions provide higher performance
• 55-727x speedup on persistent RNNs over baseline
• Within a factor of 3-7x of Nvidia V100 on persistent RNNs at FP32
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Thank you!
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Backup Slides
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Persistent RNN
• Recurrent neural networks are a class of deep learning networks that 

have layer(s) that feedback themselves
• Useful for sequential tasks such as speech recognition, text 

processing, and translation
• In persistent RNN, weights are kept in registers and activations are 

kept in shared memory
• Leverages the large capacity and high bandwidth of SRAMs on modern FPGA
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PDL-FGPU Architecture: Modifications
• Dot product vector instruction

• Fused shared memory load, dot, and 
reduction operation

• Activation instructions
• Reduces instruction pressure

• Synchronization instructions
• Better inter-thread cooperation

• Conditional memory load/store 
instructions

• if reg==0 then ld/st
• Avoids control flow divergence

• Memory controller improvements
• High bandwidth register file with 1024-

bit single-cycle registers
• 128 bytes / cycle

• High bandwidth shared memory
• 128 bytes / cycle 
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PDL-FGPU Configuration
• Hardware

• 8 Compute Units per PDL-FGPU (16 in progress)
• 8 Processing Elements per Compute Unit
• 1024-bit wide operation (32 DSPs) per Processing Element

• Execution
• 4096 threads in 64-wide SIMD
• 16x1024-bit & 32x32-bit registers per thread
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Hardware Comparison Table 
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Nvidia V100 S10-280 S10-210

FP32 throughput 15 TFLOPS 9.2 TFLOPS 6.3 TFLOPS

SRAM size 38 MB 30 MB 30 MB

SRAM bandwidth 145 TB/s 140 + 110 TB/s 65 + 80 TB/s

DRAM bandwidth 1 TB/s (HBM2*4) 64 GB/s (DDR4*4) 0.5 TB/s (HBM2*2)

Frequency 1.4 GHz / 1.67 GHz 1 GHz 1 GHz

I/O 300 GB/s (NVLink) 240 GB/s 240 GB/s

Power 345W ? ?



PDL-FGPU vs FGPU: Resource Utilization
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Config ALM RAM DSP Min Freq (MHz) Max Freq (MHz)

FGPU PDL FGPU PDL FGPU PDL FGPU PDL FGPU PDL

FP32* 329226 494619 1318 5790 768 3552 270 201 322 240

INT8 239714 726823 742 4766 128 128 282 236 335 287

INT4 239714 589425 742 4766 128 128 282 274 335 313

Note: The full FP32 configuration supports all single precision function units: fadd, fmul, fdiv, etc. The design 
allows any unit to be selectively disabled to save area/improve frequency but requires another full Quartus 
compilation.



PDL-FGPU vs FGPU: Resource Util Breakdown
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PDL-FGPU 
for LSTM / 
GRU

Global Per CU

global
memory 
controller

workgroup
dispatcher

context 
memory

wavefront 
scheduler

CU 
memory 
controller

shared 
memory

CV

Total dot
vector 
regfile act

ALM 47510 885 46 1589 2993 14062 27725 8476 3505 3126
RAM 61 8 2 2 55 78 507 0 416 56
DSP 0 0 0 0 0 0 392 280 0 64

FGPU 
baseline for 
LSTM / GRU

Global Per CU
global 
memory 
controller

workgroup 
dispatcher

context 
memory

wavefront 
scheduler

CU 
memory 
controller CV

ALM 39253 930.3 46 1500 16813 12949
RAM 53 8 2 2 48 56
DSP 0 0 0 0 0 80



Feature-wise Speedup: FP32 RNN (Skip Input)
• Domain-specific macro unit 

(e.g. dot unit) provides the 
most performance 
improvement
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Even More Backup Slides
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FPGU vs PDL-FGPU: ALMs

• Most configurations ~1.5x ALM 
consumption

• Efficiently leverage DSPs and on-
chip RAM

• Low precision mode has higher 
ALM consumption

• Currently low precision dot 
function units are mapped into 
ALMs and could be improved by 
packing them into DSPs

• Fixed in new versions
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FPGU vs PDL-FGPU: M20ks
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• ~5x M20ks consumption
• Vector register file
• Shared memory
• Other microarchitectural changes 

to better leverage on chip RAM



FPGU vs PDL-FGPU: DSPs
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• FP32 configuration ~4.6x DSPs 
consumption

• Dot product unit
• Activation function unit



Configurable FP32 Function Units

Included both in FGPU and PDL-FGPU Included only in PDL-FGPU

Function unit Description Function unit Description

FADD Addition FFMA Multiplication and Accumulation

FMUL Multiplication SIGMOID Sigmoid function

FDIV Division TANH Tanh function

FSQRT Square Root

FRSQRT Inverse square root

UITOFP Cast unsigned INT to FP32

FSLT Comparison, less than
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Performance Evaluation Assumptions

• Exclude 
• host-side compute or data transfers (roughly the same between FPGA/GPU)
• initialization effects

• FGPU/PDL-FGPU: ~500 cycles of CU initialization per kernel
• GPU: one-time JIT compilation of the application

• Nvidia’s terminology is used
• Skip input RNN assumes the biased input weight activation multiply is 

precomputed, and thus only 1 GEMV is computed per input per iteration
• Linear input RNN means both the input and hidden computation are 

computed
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DC4 how much time does this take?  Point is to say that they are roughly teh same
Derek Chiou, 8/31/2019



FGPU vs PDL-FGPU: Dynamic Instruction Count
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• 30-1342x less instructions 
than base line
• Domain-specific instructions 

reduce instruction pressure



FPGA vs GPU Capabilities

• Flexible precision
• Densely packed computational resources (Intel)

• 5760 DSPs on Stratix 10 yield 7 TFLOPS, or 28 TOPS of INT8 arithmetic at 600 MHz
• 15 TFLOPS on V100, 130 TOPS of INT8 on V100 tensor core

• On-chip memory bandwidth
• 70 TB/s from M20Ks on Stratix 10 (excluding MLABs)
• 140 TB/s from register files and shared memories on V100
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PDL-FGPU Architecture: Chip
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PDL-FGPU Architecture: Compute Unit
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PDL-FGPU Architecture: Processing Element
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PDL-FGPU Estimated Resource Usage

• DSPs
• 4,480 DSPs (35 per processing element)
• 78% utilization on Stratix 10 (280)

• M20Ks
• ~10,000 M20Ks (~8000 in the vector regfiles and ~500 in the shared memory)
• ~85% utilization on Stratix 10 (280)

• ALMs
• ~700,000 ALMs
• ~75% utilization on Stratix 10 (280)
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PDL-FGPU Estimated Performance

• INT8
•

 

• FP32
•

 

42



Deep Learning Dataflow: RNN
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Deep Learning Dataflow: LSTM
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Deep Learning Dataflow: GRU
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