
Specializing FGPU for
Persistent Deep Learning

Rui Ma, Alex Hsu, Tian Tan (The University of Texas at Austin)

Eriko Nurvitadhi, David Sheffield, Aravind Dasu, Rob Pelt,

Martin Langhammer, Jaewoong Sim (Intel)

Derek Chiou (Microsoft / The University of Texas at Austin)

1

Time-to-Solution
• Time-to-Solution is an important performance metric

• Includes everything to get all (one to many) needed results
• E.g., design, implementation, validation, manufacturing, deployment, compilation, and

running times
• Time-to-Solution includes different components depending on approach

• E.g., software does not include processor development
• E.g., ASIC includes silicon design and implementation

• Only if many runs are performed, development time is amortized

• Much of the published work focuses only on kernel run time

• Amdahl's Law is applicable to the total solution

2

FPGAs High Perf, Slow Development
• Modern FPGAs can achieve industry

leading performance [1]
• Requires high specialization

• Highly-specialized solutions often
require long development time

• Time-to-Solution may be longer than a
fast-to-develop even though slower-
when-run solution

• Fast dev, reasonable perf solutions
used until specialized solution is
available

• May make optimal performance
solution unnecessary

3

Specialized FPGA solution
Combined FPGA solution
Initially faster solution

[1] Chung, et al. Serving DNNs in Real Rime at Datacenter Scale with Project Brainwave

Solution:
Specialized
Overlays

4[2] Kadi, Janssen, and Huebner. FGPU: An SIMT-Architecture for FPGAs

No

Max

Yes

Weeks - Month

Hours - Days

No

High / Max

Yes

Days - Weeks

Hours - Days

Yes

Low / Medium

No

Hours - Days

Seconds

Yes

Good

No

Hours – Days

Seconds

General purpose?

Performance

Hardware expertise?

Development time

Compile time

Workload

Specialized
Circuit

Traditional
FPGA Flow

syn, p&r

RTL

FP
G

A
Workload

Specialized
Circuit

OpenCL &
HLS Flow

compile,
syn, p&r

OpenCL / HLS

FP
G

A

OpenCL
Kernel

FGPU

FGPU [2]
Flow

Workload

FGPU
ExecFGPU RTL

syn, p&r

software
compile

program
load

FP
G

A

OpenCL
Kernel

PDL-FGPU

PDL-FGPU
Flow

Workload

PDL-FGPU
Exec

PDL-FGPU
RTL software

compile

program
load

syn, p&r

Macro
Units

FP
G

A

pre-developed once
with traditional

FPGA flow

specialized for
chosen domain

Outline

• Time-to-Solution

• PDL-FGPU Architecture and Case Study Workload

• Results

• On-Going Work and Conclusion

5

Approach
• Start with FGPU [2]

• Open-source soft GPU programmed with OpenCL-based toolchain

• Specialize FGPU for Persistent RNNs to improve performance

• Target Intel Stratix 10 GX 2800
• 933,120 ALMs
• 5,760 DSPs (9.2 FP32 TFLOPS)
• 11,721 M20Ks (117.2 TB/s BW)
• 1 GHz

6

[2] Kadi, Janssen, and Huebner. FGPU: An SIMT-Architecture for FPGAs

Architecture

7

Architecture

8

Specialized Macro: Dot
dot acc, vec, shr_ptr, shr_off

Specialized Scalar: Act
sigmoid dest, src

tanh dest, src

relu dest, src

Persistent RNN Algorithm

9

Persistent RNN Data Placement

10

Outline

• Time-to-Solution

• PDL-FGPU Architecture and Case Study Workload

• Results

• On-Going Work and Conclusion

11

Case Study Workloads

12

Algorithm Precision Matrix Size Vector Size Iters. Batch

RNN (skip input) FP32 1024x1024 1024 256 1

RNN (skip input) INT8 2048x2048 2048 256 1

RNN (skip input) INT4 4096x4096 4096 256 1

RNN (linear input) FP32 1024x1024 1024 256 1

LSTM FP32 512x512 512 256 1

GRU FP32 512x512 512 256 1

Lines of Code Engr. Time

82 Few hrs

75 Few hrs

81 Few hrs

93 Few hrs

157 < 1 day

139 < 1 day

development effort

PDL-FGPU vs FGPU: Cycles
• One to three orders of

magnitude performance
improvement over baseline

• 55-727x speedup in single
precision and low-precision

• Major reasons for difference
(85x total on skip input RNN FP32)
• Vector dot product engine (36x)
• Keeping weights on-chip (1.7x)
• Better memory scheduling (1.3x)
• Improved inter-thread

communication (1.05x)

13

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

Cy
cl

es
Workloads

FGPU PDL-FGPU

PDL-FGPU vs FGPU: Cycles—Non-PDL
• Generality maintained at close to

the same performance
• Cycle reduction mostly due to

memory controller scheduling
• 6% fewer cycles on average

• Execution time increase due to
reduced clock frequency
• 15% slowdown on average

14

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

Ex
ec

ut
io

n
Ti

m
e

(u
s)

Workloads

FGPU PDL-FGPU

PDL-FGPU vs FGPU: ALM Utilization
• FP32 mode ~1.5x ALM consumption

• Efficiently leveraged DSPs and on-chip
RAM

• Low precision mode has higher ALM
consumption

• Low precision dot product functional
units mapped into ALMs

(at submission time)
• Improved by packing into DSPs

(in newer versions)

Note: Full FP32 configuration supports all single precision
function units: fadd, fmul, fdiv, etc. Each unit can be disabled
to save area/improve frequency but requires Quartus
compilation.

15

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

AL
M

s
Precision Configuration

FGPU PDL-FGPU

PDL-FGPU vs V100: Execution Time
• 3-7x slower than Nvidia V100

• For measured problems and sizes

• Performance gap factors
• 5-6x slower frequency

• ~280 MHz vs ~1500 MHz
• Fewer floating-point units

• More DSPs available on S10 than used

Note: cuDNN only supported FP32 kernels at
submission time.

16

0

2

4

6

8

10

12

Ti
m

e
(m

s)
Workloads

PDL-FGPU GPU

17

PDL-FGPU vs V100: Throughput Utilization
• PDL-FGPU is 2-3x higher in

throughput utilization than
Nvidia due to higher
specialization

• Throughput utilization can be
further improved by increasing
FPGA resource utilization

0%

5%

10%

15%

20%

25%

Th
ro

ug
hp

ut
 U

til
(%

 o
f p

ea
k)

Workloads

PDL-FGPU GPU

Outline

• Time-to-Solution

• PDL-FGPU Architecture and Case Study Workload

• Results

• On-Going Work and Conclusion

18

On-Going Work
• Continue to optimize

• Increase number of CUs
• Increase frequency
• Improve code generation

• Compare with other OpenCL, HLS, and overlay solutions
• Target other domains
• Improve usability

19

Conclusions
• Time-to-Solution is an important (but often overlooked) metric
• Using different implementations at different times can improve

overall Time-to-Solution
• Programmability speeds up development

• Programmable solutions allows quick iteration for functional correctness
• Domain-specific programmable solutions can minimize runtime

• Highly-specialized solution maximizes performance once available

• Domain-specific programmable solutions provide higher performance
• 55-727x speedup on persistent RNNs over baseline
• Within a factor of 3-7x of Nvidia V100 on persistent RNNs at FP32

20

Thank you!

21

Backup Slides

22

Persistent RNN
• Recurrent neural networks are a class of deep learning networks that

have layer(s) that feedback themselves
• Useful for sequential tasks such as speech recognition, text

processing, and translation
• In persistent RNN, weights are kept in registers and activations are

kept in shared memory
• Leverages the large capacity and high bandwidth of SRAMs on modern FPGA

23

PDL-FGPU Architecture: Modifications
• Dot product vector instruction

• Fused shared memory load, dot, and
reduction operation

• Activation instructions
• Reduces instruction pressure

• Synchronization instructions
• Better inter-thread cooperation

• Conditional memory load/store
instructions

• if reg==0 then ld/st
• Avoids control flow divergence

• Memory controller improvements
• High bandwidth register file with 1024-

bit single-cycle registers
• 128 bytes / cycle

• High bandwidth shared memory
• 128 bytes / cycle

24

PDL-FGPU Configuration
• Hardware

• 8 Compute Units per PDL-FGPU (16 in progress)
• 8 Processing Elements per Compute Unit
• 1024-bit wide operation (32 DSPs) per Processing Element

• Execution
• 4096 threads in 64-wide SIMD
• 16x1024-bit & 32x32-bit registers per thread

25

Hardware Comparison Table

26

Nvidia V100 S10-280 S10-210

FP32 throughput 15 TFLOPS 9.2 TFLOPS 6.3 TFLOPS

SRAM size 38 MB 30 MB 30 MB

SRAM bandwidth 145 TB/s 140 + 110 TB/s 65 + 80 TB/s

DRAM bandwidth 1 TB/s (HBM2*4) 64 GB/s (DDR4*4) 0.5 TB/s (HBM2*2)

Frequency 1.4 GHz / 1.67 GHz 1 GHz 1 GHz

I/O 300 GB/s (NVLink) 240 GB/s 240 GB/s

Power 345W ? ?

PDL-FGPU vs FGPU: Resource Utilization

27

Config ALM RAM DSP Min Freq (MHz) Max Freq (MHz)

FGPU PDL FGPU PDL FGPU PDL FGPU PDL FGPU PDL

FP32* 329226 494619 1318 5790 768 3552 270 201 322 240

INT8 239714 726823 742 4766 128 128 282 236 335 287

INT4 239714 589425 742 4766 128 128 282 274 335 313

Note: The full FP32 configuration supports all single precision function units: fadd, fmul, fdiv, etc. The design
allows any unit to be selectively disabled to save area/improve frequency but requires another full Quartus
compilation.

PDL-FGPU vs FGPU: Resource Util Breakdown

28

PDL-FGPU
for LSTM /
GRU

Global Per CU

global
memory
controller

workgroup
dispatcher

context
memory

wavefront
scheduler

CU
memory
controller

shared
memory

CV

Total dot
vector
regfile act

ALM 47510 885 46 1589 2993 14062 27725 8476 3505 3126
RAM 61 8 2 2 55 78 507 0 416 56
DSP 0 0 0 0 0 0 392 280 0 64

FGPU
baseline for
LSTM / GRU

Global Per CU
global
memory
controller

workgroup
dispatcher

context
memory

wavefront
scheduler

CU
memory
controller CV

ALM 39253 930.3 46 1500 16813 12949
RAM 53 8 2 2 48 56
DSP 0 0 0 0 0 80

Feature-wise Speedup: FP32 RNN (Skip Input)
• Domain-specific macro unit

(e.g. dot unit) provides the
most performance
improvement

29

Even More Backup Slides

30

FPGU vs PDL-FGPU: ALMs

• Most configurations ~1.5x ALM
consumption

• Efficiently leverage DSPs and on-
chip RAM

• Low precision mode has higher
ALM consumption

• Currently low precision dot
function units are mapped into
ALMs and could be improved by
packing them into DSPs

• Fixed in new versions

31

FPGU vs PDL-FGPU: M20ks

32

• ~5x M20ks consumption
• Vector register file
• Shared memory
• Other microarchitectural changes

to better leverage on chip RAM

FPGU vs PDL-FGPU: DSPs

33

• FP32 configuration ~4.6x DSPs
consumption

• Dot product unit
• Activation function unit

Configurable FP32 Function Units

Included both in FGPU and PDL-FGPU Included only in PDL-FGPU

Function unit Description Function unit Description

FADD Addition FFMA Multiplication and Accumulation

FMUL Multiplication SIGMOID Sigmoid function

FDIV Division TANH Tanh function

FSQRT Square Root

FRSQRT Inverse square root

UITOFP Cast unsigned INT to FP32

FSLT Comparison, less than

34

Performance Evaluation Assumptions

• Exclude
• host-side compute or data transfers (roughly the same between FPGA/GPU)
• initialization effects

• FGPU/PDL-FGPU: ~500 cycles of CU initialization per kernel
• GPU: one-time JIT compilation of the application

• Nvidia’s terminology is used
• Skip input RNN assumes the biased input weight activation multiply is

precomputed, and thus only 1 GEMV is computed per input per iteration
• Linear input RNN means both the input and hidden computation are

computed

35

DC4

Slide 35

DC4 how much time does this take? Point is to say that they are roughly teh same
Derek Chiou, 8/31/2019

FGPU vs PDL-FGPU: Dynamic Instruction Count

36

• 30-1342x less instructions
than base line
• Domain-specific instructions

reduce instruction pressure

FPGA vs GPU Capabilities

• Flexible precision
• Densely packed computational resources (Intel)

• 5760 DSPs on Stratix 10 yield 7 TFLOPS, or 28 TOPS of INT8 arithmetic at 600 MHz
• 15 TFLOPS on V100, 130 TOPS of INT8 on V100 tensor core

• On-chip memory bandwidth
• 70 TB/s from M20Ks on Stratix 10 (excluding MLABs)
• 140 TB/s from register files and shared memories on V100

37

PDL-FGPU Architecture: Chip

38

PDL-FGPU Architecture: Compute Unit

39

PDL-FGPU Architecture: Processing Element

40

PDL-FGPU Estimated Resource Usage

• DSPs
• 4,480 DSPs (35 per processing element)
• 78% utilization on Stratix 10 (280)

• M20Ks
• ~10,000 M20Ks (~8000 in the vector regfiles and ~500 in the shared memory)
• ~85% utilization on Stratix 10 (280)

• ALMs
• ~700,000 ALMs
• ~75% utilization on Stratix 10 (280)

41

PDL-FGPU Estimated Performance

• INT8
•

• FP32
•

42

Deep Learning Dataflow: RNN

43

Deep Learning Dataflow: LSTM

44

Deep Learning Dataflow: GRU

45

