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* Mainstream approaches in intrusion detection do not scale well to the
embedded domain, mainly due to computational complexity

* Limited computing power at the nodes, not intended for significant
security mechanisms

* More lightweight security mechanisms required, adaptable to updates

* Explore the use Neural Networks as a more lightweight Network
Intrusion Detection approach



Intrusion Detection Neural Network
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* NSL-KDD dataset:
* Used 29 of the 41 features of each record (3 in categorical form)
* 110 inputs after one-hot encoding

* Trained a NN with 110-21-2, similar to that in [1], with Tensorflow [2]

* Obtaining at best: Test set classification results

* 96.02% accuracy on the train set Predicted Class Actual Class

Normal Malicious
* 80.52% accuracy on the test set Maticions 454 2596




HLS Implementation

WARWICK

THE UNIVERSITY OF WARWICK

* Vivado High Level Synthesis 2016.4, targeting a Xilinx Zynq Z-7020

* Use of memories as Look-Up-Tables, inputs restored to 29
* Use of floating point IEEE-754 to support coefficient updates
* Configurable weights and biases through AXI-Lite (2375) : 2.3ms

®* Resource utilization:

* Timing results:

LUTs FFs DSPs BRAM ..
Frequency Latency Initiation Interval
Utilized 26463 56478 111 88 (MHz) (Clock Cycles) (Clock Cycles)
Available 53200 106400 220 280 76 237 29

% Utilization 50 53 50

31




FPGA System-Implemented System
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®* Execution time-Test set:

Arm-A9 2 Arm-A9 ®  Accelerator P Idhammad et al.
@667MHz  @667MHz @76MHz [3] (normalized)

4751.440ms 1458.1ms 9.018ms 240.136ms

4 Unoptimised, 110 inputs.
b Optimised, Look-Up-Table.

* Detection rate (IPv4 min-576B):

Transfer Rate Platform Latency Detection Rate
(Packets/Second) (us) (Packets/Classification)
1Gbps Arm-A9 64.678 14.036
(217,014) Accel 0.4 0.0868
10Gbps Arm-A9 64.678 140.360
(2,170,139) Accel 0.4 0.8680




Conclusion
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* Network Intrusion Detection NN with moderate complexity
* Flexible accelerator that adapts to newly trained weights dynamically

* Offers fast detection rate, within a single packet

Future work
* Explore different and alternative network topologies

* Extend our approach to other datasets

* Explore approaches that reduce latency
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