
SW/HW Codesign of the Post-Quantum

Cryptography Algorithm NTRUEncrypt

Using HLS and RTL Design

Methodologies

Farnoud Farahmand, Duc Tri Nguyen,

Viet B. Dang*, Ahmed Ferozpuri

and Kris Gaj

George Mason

University

Post-Quantum Cryptography (PQC)

Ongoing NIST PQC standardization process

Total 69 submissions in Round 1 and

26 submissions qualified to Round 2

Challenges

Mathematical complexity

Large amount of man-power

New types of basic operations

Constant-time implementations

Need for new SCA (Side-Channel Attack) countermeasures against

power and electromagnetic analysis

2

Risks of Early Hardware Implementations

3

GMU implementation of DAGS developed in Fall 2017-Spring 2018.

Preliminary results presented at the Code-Based Cryptography (CBC)

workshop in April 2018.

Attack against DAGS announced on May 16, 2018.

DAGS not qualified to Round 2

Software/Hardware Codesign

Most time-critical

operation

Software

RTL or HLS-generated

Hardware

4

SW/HW Codesign for PQC: Advantages

5

Focus on a few (typically 1-3) major operations, known to be easily
parallelizable

much shorter development time (at least by a factor of 10)

guaranteed substantial speed-up

Insight regarding performance of future instruction set extensions
of modern microprocessors

Possibility of implementing multiple candidates by the same
research group, eliminating the influence of different

design skills

operation subset (e.g., including or excluding key generation)

interface & protocol

optimization target

platform

Two Major Types of Platforms

6

FPGA Fabric

& Hard-core Processors

FPGA Fabric, including

Soft-core Processors

Examples:

• Xilinx Zynq 7000 System on Chip (SoC)

• Xilinx Zynq UltraScale+ MPSoC

• Intel Arria 10 SoC FPGAs

• Intel Stratix 10 SoC FPGAs

Examples:

Xilinx Virtex UltraScale+ FPGAs

Intel Stratix 10 FPGAs, including

• Xilinx MicroBlaze

• Intel Nios II

• RISC-V, originally UC Berkeley

Processor

w/ Memory

& I/O

FPGA

Fabric

FPGA

Fabric

Soft-core

Processor

Selected Platform

7

FPGA Family: Xilinx Zynq UltraScale+ MPSoC

Device: XCZU9EG-2FFVB1156E

Prototyping Board: ZCU102 Evaluation Kit from Xilinx

Processing System:

Quad-core ARM Cortex-A53 Application Processing Unit,

running at the frequency of 1.2 GHz (only one core used

for benchmarking)

Programmable Logic:

Configurable Logic Blocks (CLB), Block RAMs, DSP units

Experimental Setup

8

Output FIFOInput FIFO
Hardware

Accelerator

Zynq Processing System

AXI DMA

FIFO
Interface

FIFO
Interface

AXI Stream
Interface

AXI Stream
Interface

A
X

I L
it

e
In

te
rf

a
ce

A
X

I F
u

ll

In
te

rf
a

ce

A
X

I L
it

e
In

te
rf

a
ce

IR
Q

Clocking wizard

rd_clkwr_clk wr_clk rd_clkclk

UUT_clk

Main Clock

A
X

I L
it

e
In

te
rf

a
ce

AXI Timer
AXI Lite

Interface

Selected Algorithm

NTRUEncrypt is one of the most well-known PQC algorithms that
has withstood cryptanalysis.

The speed of NTRUEncrypt in software, especially on embedded
software platforms, is limited by the long execution time of
polynomial multiplication.

We implement two variants of the NIST Round 1 PQC candidate
NTRUEncrypt: ntru-pke-443 and ntru-pke-743 in bare-metal mode.

Polynomial multiplication is implemented in the Programmable
Logic (PL) of Zynq using two approaches RTL and HLS

Accelerator Design

10

Target: Minimum Execution Time

Register-Transfer Level methodology with VHDL

Block diagram of the Datapath and Algorithmic State Machine (ASM) chart of the

Controller

High Level Synthesis methodology with C

Goal: The same or comparable number of clock cycles as in
the Register-Transfer Level (manual) implementation in VHDL

Attempt 1: Reference implementation based on the grade school algorithm for
multiplication (a.k.a. schoolbook, paper-and-pencil, etc.)

Attempt 2: Optimized implementation based on rotation

Multiple attempts at optimization using Vivado HLS directives (pragmas) and
minor code changes

Outcome 1: Tens of thousands of clock cycles, compared to the expected n=743 clock
cycles

Solution: Rewriting the code in C in such a way to match the
block diagram used to generate VHDL code

Outcome 2:

Expected functionality

Around n clock cycles of the execution time

Speed-up achieved for Polynomial Multiplication

11

89.1
82.8

128.5
119.8

81.9
76.1

106.8
99.6

0

20

40

60

80

100

120

140

ntru-pke-443
ENC Speed up

ntru-pke-443
DEC Speed up

ntru-pke-743
ENC Speed up

ntru-pke-743
DEC Speed up

RTL HLS

Total Speed-up achieved for entire ENC/DEC

12

2.4

4 3.9

6.8

2.3

4 3.9

6.8

0

1

2

3

4

5

6

7

8

ntru-pke-443
ENC Total Speed-up

ntru-pke-443
 DEC Total Speed up

ntru-pke-743
ENC Total Speed-up

ntru-pke-743
 DEC Total Speed up

RTL HLS

Resource Utilization

13

44,257

51,953

76,972

95,329

29,655

49,293 49,674

82,221

7,802 9,413 11,425
16,686

1 1 1 1
0

20,000

40,000

60,000

80,000

100,000

RTL ntru-pke-443 HLS ntru-pke-443 RTL ntru-pke-743 HLS ntru-pke-743

LUTs FFs Slices BRAMs

Q&A

14

Suggestions?

CERG: http://cryptography.gmu.edu

ATHENa: http://cryptography.gmu.edu/athena

Questions? Comments?

Thank You!

