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Post-Quantum Cryptography (PQC)

Ongoing NIST PQC standardization process

Total 69 submissions in Round 1 and 

26 submissions qualified to Round 2

Challenges

Mathematical complexity

Large amount of man-power

New types of basic operations

Constant-time implementations

Need for new SCA (Side-Channel Attack) countermeasures against 

power and electromagnetic analysis
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Risks of Early Hardware Implementations
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GMU implementation of DAGS developed in Fall 2017-Spring 2018.

Preliminary results presented at the Code-Based Cryptography (CBC)

workshop in April 2018.

Attack against DAGS announced on May 16, 2018.

DAGS not qualified to Round 2



Software/Hardware Codesign

Most time-critical 

operation

Software

RTL or HLS-generated 

Hardware
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SW/HW Codesign for PQC: Advantages
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Focus on a few (typically 1-3) major operations, known to be easily 
parallelizable

much shorter development time (at least by a factor of 10)

guaranteed substantial speed-up

Insight regarding performance of future instruction set extensions 
of modern microprocessors

Possibility of implementing multiple candidates by the same 
research group, eliminating the influence of different

design skills

operation subset (e.g., including or excluding key generation)

interface & protocol

optimization target

platform



Two Major Types of Platforms

6

FPGA Fabric

& Hard-core Processors

FPGA Fabric, including 

Soft-core Processors

Examples:

• Xilinx Zynq 7000 System on Chip (SoC)

• Xilinx Zynq UltraScale+ MPSoC

• Intel Arria 10 SoC FPGAs

• Intel Stratix 10 SoC FPGAs

Examples:

Xilinx Virtex UltraScale+ FPGAs

Intel Stratix 10 FPGAs, including 

• Xilinx MicroBlaze

• Intel Nios II

• RISC-V, originally UC Berkeley

Processor

w/ Memory

& I/O

FPGA 

Fabric

FPGA 

Fabric

Soft-core

Processor



Selected Platform
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FPGA Family: Xilinx Zynq UltraScale+ MPSoC

Device: XCZU9EG-2FFVB1156E

Prototyping Board:   ZCU102 Evaluation Kit from Xilinx

Processing System:

Quad-core ARM Cortex-A53 Application Processing Unit, 

running at the frequency of 1.2 GHz (only one core used 

for benchmarking)

Programmable Logic:

Configurable Logic Blocks (CLB), Block RAMs, DSP units



Experimental Setup
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Selected Algorithm

NTRUEncrypt is one of the most well-known PQC algorithms that 
has withstood cryptanalysis.

The speed of NTRUEncrypt in software, especially on embedded 
software platforms, is limited by the long execution time of 
polynomial multiplication.

We implement two variants of the NIST Round 1 PQC candidate 
NTRUEncrypt: ntru-pke-443 and ntru-pke-743 in bare-metal mode.

Polynomial multiplication is implemented in the Programmable 
Logic (PL) of Zynq using two approaches RTL and HLS



Accelerator Design
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Target: Minimum Execution Time

Register-Transfer Level methodology with VHDL

Block diagram of the Datapath and Algorithmic State Machine (ASM) chart of the 

Controller

High Level Synthesis methodology with C

Goal: The same or comparable number of clock cycles as in 
the Register-Transfer Level (manual) implementation in VHDL

Attempt 1: Reference implementation based on the grade school algorithm for 
multiplication (a.k.a. schoolbook, paper-and-pencil, etc.)

Attempt 2: Optimized implementation based on rotation

Multiple attempts at optimization using Vivado HLS directives (pragmas) and 
minor code changes

Outcome 1: Tens of thousands of clock cycles, compared to the expected n=743 clock 
cycles

Solution: Rewriting the code in C in such a way to match the 
block diagram used to generate VHDL code

Outcome 2:

Expected functionality

Around n clock cycles of the execution time



Speed-up achieved for Polynomial Multiplication
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Total Speed-up achieved for entire ENC/DEC
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Resource Utilization
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Q&A
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Suggestions?

CERG: http://cryptography.gmu.edu

ATHENa:  http://cryptography.gmu.edu/athena

Questions? Comments?

Thank You!


