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Ongoing Development
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IBM’s Q System 50 Qubits, 20 Qubits

Intel’s Tangle lake 49 Qubits Google’s Bristlecone – 72 Qubits

IonQ 160 Qubits



Department of  Electrical & Computer Engineering 

With Quantum Supremacy…

 What is NOT considered as post-quantum secure?

Algorithm
Secure in Post-quantum 
Era?

RSA-1024, -2048, -4096 No

Elliptic Curve Crypto (ECC)-256, -521 No

Diffie-Hellman No

ECC Diffie-Hellman No

AES-128, -192 No

5
[1] https://www.nist.gov/

[1]
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How does this impacts us?
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Question 
 Can we increase the key size of some popular 

encryption schemes, so that they can be post-
quantum secure? 
• Maybe yes, maybe no

* TechBeacon, Waiting for quantum computing: Why encryption has nothing to worry about, 2018

* 

Table II. Equivalent Security Levels of AES and RSA under Attacks from Classic and Quantum Computers * 

Attack Platform

Symmetric Encryption Asymmetric (Public-key) Encryption

Algorithm Key Size Security Level Algorithm Key Size Security Level

Classic
Computers

AES-128 128 128 RSA-2048 2,048 112

AES-256 256 256 RSA-15360 15,360 256

Quantum
Computers

AES-128 128 64 RSA-2048 2,048 25

AES-256 256 128 RSA-15360 15,360 31

Grover’s algorithm Shor’s algorithm
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Quantum Computer-based Cryptography
vs 

General Computer-based Quantum-proof Cryptography
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Batman & Ironman 
Vs 

Spiderman
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Quantum Computer-based Cryptography
vs 

General Computer-based Quantum-proof Cryptography
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Post-Quantum Cryptography (PQC) 
Standardization (Round -1)
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 NIST
• Jan 2017 – Dec 2018

• Evaluating 69 (5 withdrawn)

submissions of PQC, 
to bring up a standard 
(just like AES or RSA):
 21 lattice-based

 18 code-based

 Some hash-based

 Some others

[1] https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

[1]
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 NIST
• Jan 2017 – Dec 2018

• Evaluating 69 (5 withdrawn)

submissions of PQC, 
to bring up a standard 
(just like AES or RSA):
 21 lattice-based

 18 code-based

 Some hash-based

 Some others

[1] https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

[1]

Ring-Learning with Error (Ring-LWE)

Post-Quantum Cryptography (PQC) 
Standardization (Round -1)
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Post-Quantum Cryptography (PQC) 
Standardization (Round -2)
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 NIST
• Jan 30, 2019 

published candidates 
of Round-2: 

• 26 candidates 

• Who survived?
 12 lattice-based

 8 code-based

 some multivariate-based 
and hash based for 
digital signatures
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Post-Quantum Cryptography (PQC) 
Standardization (Round -2)

Sr. No.

Public-Key Encryption

Lattice-based/R-LWE Code-based

1 NTRU Prime (R-lattice) Classic McEliece (Binary Goppa)

2 NTRU (R-lattice) HQC (BCH & Cyclic)

3 LAC (R-LWE) RQC (Cyclic)

4 SABER (Mod-LWR) LEDA (LDPC)

5 Round5 (R-LWR) ROLLO (LAKE & LOCKER) (LRPC)
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Post-Quantum Cryptography (PQC) 
Standardization (Round -2)

Sr. 
No.

Key Establishment/Encapsulation

Lattice-based/R-LWE Code-based

1 NewHope (R-LWE) BIKE (MDPC)

2 NTRU (R-lattice) NTS-KEM (Binary Goppa)

3 FrodoKEM (R-LWE) LEDA (LDPC)

4 CRYSTALS (R-LWE)
ROLLO (LRPC)
(LAKE & LOCKER)

5 SABER (Mod-LWR)

6 Three Bears (Mod-LWR)
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Post-Quantum Cryptography (PQC) 
Standardization (Round -2)

Sr. 
No.

Digital Signature

Lattice-based/R-LWE Multivariate-based Others

1 FALCON (NTRU R-lattice) GeMSS Picnic

2 qTESLA (R-LWE) MQDSS SPHINCS

3 CRYSTALS (R-LWE) LUOV

4 Rainbow
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Why Ring-LWE?
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 Advantages
1) Based on LWE - a branch of lattice-based 

cryptosystem
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Learning with Error (LWE)

s1

s2

s3

s4

37132 e1 13

* + =
1974 e2 12

115146 e3 3

 An arbitrary number of equations, each distorted up to αq, 

 How to find s?

a s e b

(2s1 + 13s2 + 7s3 + 3s4) + e1 ≈ 13 (mod q)
(4s1 + 7s2 + 9s3 + 1s4) + e2 ≈ 12 (mod q)
(6s1 + 14s2 + 5s3 + 11s4) + e3 ≈ 3 (mod q)
(5s1 + 11s2 + 13s3 + 2s4) + e4 ≈ 9 (mod q)

213115 e3 9
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Why Ring-LWE?
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 Advantages
1) Based on LWE - a branch of lattice-based 

cryptosystem
2) Can perform

 Public-key encryption
 Key-exchange mechanism
 Digital signature

3) Can extend to somewhat homomorphic encryption 
(SHE)

4) Smaller key size (7k~15k bits vs. 1MB for code-based & 1TB for “post-quantum RSA”)

5) Simpler computation & circuits 
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Ring-Learning with Error (R-LWE)
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 Public-Key Cryptosystem

Key Generator
Module e

TRNG

Gaussian Noise 
Sampler

Alice

Encryption 
Module

r0, r1, r2

Bob

Gaussian Noise 
Sampler

Decryption 
Module
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Ring-Learning with Error (Ring-LWE)

 Public-key Cryptosystem (PKC)
• Setup (Alice)

 Let q be a prime. In a ring Rq, picks a, s, e, where s, e are small polynomials

 s.t. polynomial b = a⋅s+e (1)

 Publishes {a, b} as the public key, as well as t = 

 Keeps s as the private key

[1] Oded Regev, “On lattices, learning with errors, random linear codes, and cryptography”, 2005

[1]
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Ring-Learning with Error (Ring-LWE)
 Public-key Cryptosystem (PKC)

• Setup (Alice)

 Publishes {a, b = a⋅s+e} as the public key, as well as t = . 

 Keeps s as the private key

• Encryption (Bob to Alice):
 Has a plaintext m (a binary string in Rq)

 Picks small r0, r1, r2

 Encryption using public key: 
• c0 = b ⋅ r0 + r2 + tm; 

• c1 = a ⋅ r0 + r1

[1] Oded Regev, “On lattices, learning with errors, random linear codes, and cryptography”, 2005

[1]
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Ring-Learning with Error (Ring-LWE)

 Public-key Cryptosystem (PKC)
• Setup (Alice)

 Publishes {a, b = a⋅s+e} as the public key, as well as t = 

 Keeps s as the private key

• Encryption (Bob to Alice):
 Generates the cipher: 

• c0 = b ⋅ r0 + r2 + tm; 

• c1 = a ⋅ r0 + r1

• Decryption (Alice computes):
 c0 – s ⋅ c1 = b ⋅ r0 + r2 + tm - s ⋅ a ⋅ r0 - s ⋅ r1  (2)

= tm + e ⋅ r0 + r2 - s ⋅ r1 = tm + “small”

 m =  (c0 – s ⋅ c1)/t
e, r0, r1, r2 will be 

eliminated easily by Alice, 
but they make attacker’s 

life so much harder.

e, r0, r1, r2 will be 
eliminated easily by Alice, 
but they make attacker’s 

life so much harder.

[1] Oded Regev, “On lattices, learning with errors, random linear codes, and cryptography”, 2005

[1]
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R-LWE Public Key Encryption Co-processor

 Public-key Cryptosystem (PKC)
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R-LWE Public Key Encryption Co-processor

 Basic Operations
(Every operation is modular)
• Random Number Generator
• Gaussian Noise Sampler
• Polynomial Addition/Subtraction
• Scalar Multiplication with a Binary Polynomial
• Scalar Division to the Nearest Binary Integer
• Polynomial Multiplication

 Size of the Polynomials/Vectors
• Length: 256, 512, or 1024
• Coefficients: within the prime number 1,049,089
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R-LWE Public Key Encryption Co-processor

 Basic Operations
(Every operation is modular)
• Random Number Generator ✓
• Gaussian Noise Sampler ✓
• Polynomial Addition/Subtraction ✓
• Scalar Multiplication with a Binary Polynomial ✓
• Scalar Division to the Nearest Binary Integer ✓

 Can be done by 2 subtractions

• Polynomial Multiplication hard

 Size of the Polynomials/Vectors
• Length: 256, 512, or 1024
• Symbol: within the prime number 1,049,089
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Key Design Features

 Parameterized
• Fully configurable parameters

 Enable deployment in small devices like IoT as well as large 
platforms like Homomorphic Encryption

 Optimized
• Fully optimized for reconfigurable hardware 

implementation 

 Provides building blocks for other schemes
• With little modifications to implement R-LWE schemes 

in NIST standardization process

29
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R-LWE Public Key Encryption Co-processor

 Polynomial Addition
• If a = [a0, a1], b = [b0, b1], then:

 c = a + b = [(a0+b0)%q, (a1+b1)%q]
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 Polynomial Subtraction
• If a = [a0, a1], b = [b0, b1], then:

 c = a – b
• c0 = (a0 – b0)%q
• c0 = (a0 >= b0) ? (a0 – b0) : (q – (b0 – a0))

R-LWE Public Key Encryption Co-processor



Department of  Electrical & Computer Engineering 

 Scalar Multiplication

• a constant and pre-computed, and

• m the plaintext is a binary vector

 c0 = (m[0] == 1) ? t : 0

R-LWE Public Key Encryption Co-processor
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 Scalar division to the nearest binary integer

• Denote 

• Compute 

R-LWE Public Key Encryption Co-processor
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 Modular Polynomial Multiplication
• Naïve Convolution then Polynomial Reduction

• By FFT over finite field

Negative Wrapped Convolution (NWC)

Fast Number Theoretic Transform (NTT)

Component-wise multiplication

Inverse NTT

Inverse NWC

R-LWE Public Key Encryption Co-processor
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 Modular Polynomial Multiplication
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R-LWE Public Key Encryption Co-processor
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 Modular Polynomial Multiplication
• NTT Module

36

R-LWE Public Key Encryption Co-processor
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R-LWE Public Key Encryption Co-processor

 Public-key Cryptosystem (PKC)
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Performance Evaluation
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 Target Platform
• Xilinx Zynq-7000 FPGA

 Hardware Description 
Language
• Verilog 2001

 Design Tool
• Xilinx Vivado 2018.2 design 

suite
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Correlation Between {q, n} and {Latency, Area}
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Operation Latency

KeyGen
 

Enc  

Dec  

Resource Cost

LUTs   

Registers   
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Hardware Cost for PKC with q = 12,289
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Length (n) LUTs Registers DSP

128 66251 16805 26

256 114900 33138 26

512 227458 65643 26

1024 426402 130540 26

Length (n) LUTs Registers DSP BRAM

128 7376 221 26 3.5

256 9152 396 26 3.5

512 11504 674 26 3.5

1024 15717 1255 26 3.5

 LUTs Only Implementation

 BRAM Implementation
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Hardware Cost: Varying q and n values
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PKC System Total Latency
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NTT Multiplier Latency Comparison
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Conclusion
 Implementation

• FGPA-tailored implementation of primitives

 Optimization
• Algorithmic optimizations to reduce hardware cost

 Open Source
• Release of the synthesizable and fully verifiable 

Verilog code with following advantages:
 Parameterization

• Enable deployment in small devices as well as large platforms

 Fast Polynomial Multiplier
• Efficient n-point NTT multiplier

46
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Thank you
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 Code available at: 
http://ascslab.org/research/pqcp/index.html


