
Department of Electrical & Computer Engineering

Open-Source FPGA Implementation
of Post-Quantum Cryptographic

Hardware Primitives

Rashmi Agrawal, Bu Lake, Alan Ehret, and Michel Kinsy
Adaptive & Secure Computing Systems Lab

Department of Electrical & Computer Engineering
Boston University

1

Department of Electrical & Computer Engineering

Presentation Outline

2

 Motivation: why quantum-proof?

 NIST: steps towards standardization

 State of the Art: main algorithm

 FPGA-based Implementation: primitives

 Evaluation: cost and performance

 Key Contributions: conclusion

Department of Electrical & Computer Engineering

Presentation Outline

3

 Motivation: why quantum-proof?

 NIST: steps towards standardization

 State of the Art: main algorithm

 FPGA-based Implementation: primitives

 Evaluation: cost and performance

 Key Contributions: conclusion

Department of Electrical & Computer Engineering

Ongoing Development

4

IBM’s Q System 50 Qubits, 20 Qubits

Intel’s Tangle lake 49 Qubits Google’s Bristlecone – 72 Qubits

IonQ 160 Qubits

Department of Electrical & Computer Engineering

With Quantum Supremacy…

 What is NOT considered as post-quantum secure?

Algorithm
Secure in Post-quantum
Era?

RSA-1024, -2048, -4096 No

Elliptic Curve Crypto (ECC)-256, -521 No

Diffie-Hellman No

ECC Diffie-Hellman No

AES-128, -192 No

5
[1] https://www.nist.gov/

[1]

Department of Electrical & Computer Engineering

How does this impacts us?

Department of Electrical & Computer Engineering

Question
 Can we increase the key size of some popular

encryption schemes, so that they can be post-
quantum secure?
• Maybe yes, maybe no

* TechBeacon, Waiting for quantum computing: Why encryption has nothing to worry about, 2018

*

Table II. Equivalent Security Levels of AES and RSA under Attacks from Classic and Quantum Computers *

Attack Platform

Symmetric Encryption Asymmetric (Public-key) Encryption

Algorithm Key Size Security Level Algorithm Key Size Security Level

Classic
Computers

AES-128 128 128 RSA-2048 2,048 112

AES-256 256 256 RSA-15360 15,360 256

Quantum
Computers

AES-128 128 64 RSA-2048 2,048 25

AES-256 256 128 RSA-15360 15,360 31

Grover’s algorithm Shor’s algorithm

Department of Electrical & Computer Engineering

Quantum Computer-based Cryptography
vs

General Computer-based Quantum-proof Cryptography

8

Batman & Ironman
Vs

Spiderman

Department of Electrical & Computer Engineering

Quantum Computer-based Cryptography
vs

General Computer-based Quantum-proof Cryptography

9

Department of Electrical & Computer Engineering

Presentation Outline

10

 Motivation: why quantum-proof?

 NIST: steps towards standardization

 State of the Art: main algorithm

 FPGA-based Implementation: primitives

 Evaluation: cost and performance

 Key Contributions: conclusion

Department of Electrical & Computer Engineering

Post-Quantum Cryptography (PQC)
Standardization (Round -1)

11

 NIST
• Jan 2017 – Dec 2018

• Evaluating 69 (5 withdrawn)

submissions of PQC,
to bring up a standard
(just like AES or RSA):
 21 lattice-based

 18 code-based

 Some hash-based

 Some others

[1] https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

[1]

Department of Electrical & Computer Engineering 12

 NIST
• Jan 2017 – Dec 2018

• Evaluating 69 (5 withdrawn)

submissions of PQC,
to bring up a standard
(just like AES or RSA):
 21 lattice-based

 18 code-based

 Some hash-based

 Some others

[1] https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

[1]

Ring-Learning with Error (Ring-LWE)

Post-Quantum Cryptography (PQC)
Standardization (Round -1)

Department of Electrical & Computer Engineering

Post-Quantum Cryptography (PQC)
Standardization (Round -2)

13

 NIST
• Jan 30, 2019

published candidates
of Round-2:

• 26 candidates

• Who survived?
 12 lattice-based

 8 code-based

 some multivariate-based
and hash based for
digital signatures

Department of Electrical & Computer Engineering 14

Post-Quantum Cryptography (PQC)
Standardization (Round -2)

Sr. No.

Public-Key Encryption

Lattice-based/R-LWE Code-based

1 NTRU Prime (R-lattice) Classic McEliece (Binary Goppa)

2 NTRU (R-lattice) HQC (BCH & Cyclic)

3 LAC (R-LWE) RQC (Cyclic)

4 SABER (Mod-LWR) LEDA (LDPC)

5 Round5 (R-LWR) ROLLO (LAKE & LOCKER) (LRPC)

Department of Electrical & Computer Engineering 15

Post-Quantum Cryptography (PQC)
Standardization (Round -2)

Sr.
No.

Key Establishment/Encapsulation

Lattice-based/R-LWE Code-based

1 NewHope (R-LWE) BIKE (MDPC)

2 NTRU (R-lattice) NTS-KEM (Binary Goppa)

3 FrodoKEM (R-LWE) LEDA (LDPC)

4 CRYSTALS (R-LWE)
ROLLO (LRPC)
(LAKE & LOCKER)

5 SABER (Mod-LWR)

6 Three Bears (Mod-LWR)

Department of Electrical & Computer Engineering 16

Post-Quantum Cryptography (PQC)
Standardization (Round -2)

Sr.
No.

Digital Signature

Lattice-based/R-LWE Multivariate-based Others

1 FALCON (NTRU R-lattice) GeMSS Picnic

2 qTESLA (R-LWE) MQDSS SPHINCS

3 CRYSTALS (R-LWE) LUOV

4 Rainbow

Department of Electrical & Computer Engineering

Why Ring-LWE?

17

 Advantages
1) Based on LWE - a branch of lattice-based

cryptosystem

Department of Electrical & Computer Engineering 18

Learning with Error (LWE)

s1

s2

s3

s4

37132 e1 13

* + =
1974 e2 12

115146 e3 3

 An arbitrary number of equations, each distorted up to αq,

 How to find s?

a s e b

(2s1 + 13s2 + 7s3 + 3s4) + e1 ≈ 13 (mod q)
(4s1 + 7s2 + 9s3 + 1s4) + e2 ≈ 12 (mod q)
(6s1 + 14s2 + 5s3 + 11s4) + e3 ≈ 3 (mod q)
(5s1 + 11s2 + 13s3 + 2s4) + e4 ≈ 9 (mod q)

213115 e3 9

Department of Electrical & Computer Engineering

Why Ring-LWE?

19

 Advantages
1) Based on LWE - a branch of lattice-based

cryptosystem
2) Can perform

 Public-key encryption
 Key-exchange mechanism
 Digital signature

3) Can extend to somewhat homomorphic encryption
(SHE)

4) Smaller key size (7k~15k bits vs. 1MB for code-based & 1TB for “post-quantum RSA”)

5) Simpler computation & circuits

Department of Electrical & Computer Engineering

Presentation Outline

20

 Motivation: why quantum-proof?

 NIST: steps towards standardization

 State of the Art: main algorithm

 FPGA-based Implementation: primitives

 Evaluation: cost and performance

 Key Contributions: conclusion

Department of Electrical & Computer Engineering

Ring-Learning with Error (R-LWE)

21

 Public-Key Cryptosystem

Key Generator
Module e

TRNG

Gaussian Noise
Sampler

Alice

Encryption
Module

r0, r1, r2

Bob

Gaussian Noise
Sampler

Decryption
Module

Department of Electrical & Computer Engineering

Ring-Learning with Error (Ring-LWE)

 Public-key Cryptosystem (PKC)
• Setup (Alice)

 Let q be a prime. In a ring Rq, picks a, s, e, where s, e are small polynomials

 s.t. polynomial b = a⋅s+e (1)

 Publishes {a, b} as the public key, as well as t =

 Keeps s as the private key

[1] Oded Regev, “On lattices, learning with errors, random linear codes, and cryptography”, 2005

[1]

Department of Electrical & Computer Engineering

Ring-Learning with Error (Ring-LWE)
 Public-key Cryptosystem (PKC)

• Setup (Alice)

 Publishes {a, b = a⋅s+e} as the public key, as well as t = .

 Keeps s as the private key

• Encryption (Bob to Alice):
 Has a plaintext m (a binary string in Rq)

 Picks small r0, r1, r2

 Encryption using public key:
• c0 = b ⋅ r0 + r2 + tm;

• c1 = a ⋅ r0 + r1

[1] Oded Regev, “On lattices, learning with errors, random linear codes, and cryptography”, 2005

[1]

Department of Electrical & Computer Engineering

⌈1111𝑞1111 ⌋

Ring-Learning with Error (Ring-LWE)

 Public-key Cryptosystem (PKC)
• Setup (Alice)

 Publishes {a, b = a⋅s+e} as the public key, as well as t =

 Keeps s as the private key

• Encryption (Bob to Alice):
 Generates the cipher:

• c0 = b ⋅ r0 + r2 + tm;

• c1 = a ⋅ r0 + r1

• Decryption (Alice computes):
 c0 – s ⋅ c1 = b ⋅ r0 + r2 + tm - s ⋅ a ⋅ r0 - s ⋅ r1 (2)

= tm + e ⋅ r0 + r2 - s ⋅ r1 = tm + “small”

 m = (c0 – s ⋅ c1)/t
e, r0, r1, r2 will be

eliminated easily by Alice,
but they make attacker’s

life so much harder.

e, r0, r1, r2 will be
eliminated easily by Alice,
but they make attacker’s

life so much harder.

[1] Oded Regev, “On lattices, learning with errors, random linear codes, and cryptography”, 2005

[1]

Department of Electrical & Computer Engineering

R-LWE Public Key Encryption Co-processor

 Public-key Cryptosystem (PKC)

Department of Electrical & Computer Engineering

R-LWE Public Key Encryption Co-processor

 Basic Operations
(Every operation is modular)
• Random Number Generator
• Gaussian Noise Sampler
• Polynomial Addition/Subtraction
• Scalar Multiplication with a Binary Polynomial
• Scalar Division to the Nearest Binary Integer
• Polynomial Multiplication

 Size of the Polynomials/Vectors
• Length: 256, 512, or 1024
• Coefficients: within the prime number 1,049,089

Department of Electrical & Computer Engineering

R-LWE Public Key Encryption Co-processor

 Basic Operations
(Every operation is modular)
• Random Number Generator ✓
• Gaussian Noise Sampler ✓
• Polynomial Addition/Subtraction ✓
• Scalar Multiplication with a Binary Polynomial ✓
• Scalar Division to the Nearest Binary Integer ✓

 Can be done by 2 subtractions

• Polynomial Multiplication hard

 Size of the Polynomials/Vectors
• Length: 256, 512, or 1024
• Symbol: within the prime number 1,049,089

Department of Electrical & Computer Engineering

Presentation Outline

28

 Motivation: why quantum-proof?

 NIST: steps towards standardization

 State of the Art: main algorithm

 FPGA-based Implementation: primitives

 Evaluation: cost and performance

 Key Contributions: conclusion

Department of Electrical & Computer Engineering

Key Design Features

 Parameterized
• Fully configurable parameters

 Enable deployment in small devices like IoT as well as large
platforms like Homomorphic Encryption

 Optimized
• Fully optimized for reconfigurable hardware

implementation

 Provides building blocks for other schemes
• With little modifications to implement R-LWE schemes

in NIST standardization process

29

Department of Electrical & Computer Engineering

R-LWE Public Key Encryption Co-processor

 Polynomial Addition
• If a = [a0, a1], b = [b0, b1], then:

 c = a + b = [(a0+b0)%q, (a1+b1)%q]

Department of Electrical & Computer Engineering

 Polynomial Subtraction
• If a = [a0, a1], b = [b0, b1], then:

 c = a – b
• c0 = (a0 – b0)%q
• c0 = (a0 >= b0) ? (a0 – b0) : (q – (b0 – a0))

R-LWE Public Key Encryption Co-processor

Department of Electrical & Computer Engineering

 Scalar Multiplication

• a constant and pre-computed, and

• m the plaintext is a binary vector

 c0 = (m[0] == 1) ? t : 0

R-LWE Public Key Encryption Co-processor

Department of Electrical & Computer Engineering

 Scalar division to the nearest binary integer

• Denote

• Compute

R-LWE Public Key Encryption Co-processor

Department of Electrical & Computer Engineering

 Modular Polynomial Multiplication
• Naïve Convolution then Polynomial Reduction

• By FFT over finite field

Negative Wrapped Convolution (NWC)

Fast Number Theoretic Transform (NTT)

Component-wise multiplication

Inverse NTT

Inverse NWC

R-LWE Public Key Encryption Co-processor

Department of Electrical & Computer Engineering

 Modular Polynomial Multiplication

35

R-LWE Public Key Encryption Co-processor

Department of Electrical & Computer Engineering

 Modular Polynomial Multiplication
• NTT Module

36

R-LWE Public Key Encryption Co-processor

Department of Electrical & Computer Engineering

R-LWE Public Key Encryption Co-processor

 Public-key Cryptosystem (PKC)

Department of Electrical & Computer Engineering

Presentation Outline

38

 Motivation: why quantum-proof?

 NIST: steps towards standardization

 State of the Art: main algorithm

 FPGA-based Implementation: primitives

 Evaluation: cost and performance

 Key Contributions: conclusion

Department of Electrical & Computer Engineering

Performance Evaluation

39

 Target Platform
• Xilinx Zynq-7000 FPGA

 Hardware Description
Language
• Verilog 2001

 Design Tool
• Xilinx Vivado 2018.2 design

suite

Department of Electrical & Computer Engineering

Correlation Between {q, n} and {Latency, Area}

40

Operation Latency

KeyGen

Enc

Dec

Resource Cost

LUTs

Registers

Department of Electrical & Computer Engineering

Hardware Cost for PKC with q = 12,289

41

Length (n) LUTs Registers DSP

128 66251 16805 26

256 114900 33138 26

512 227458 65643 26

1024 426402 130540 26

Length (n) LUTs Registers DSP BRAM

128 7376 221 26 3.5

256 9152 396 26 3.5

512 11504 674 26 3.5

1024 15717 1255 26 3.5

 LUTs Only Implementation

 BRAM Implementation

Department of Electrical & Computer Engineering

Hardware Cost: Varying q and n values

42

0

100000

200000

300000

400000

500000

600000

12289 18433 40961 59393 65537

L
U

T
 U

ti
li

za
ti

on

Different q values
n = 64 n = 128 n = 256 n = 512 n = 1024

Department of Electrical & Computer Engineering

PKC System Total Latency

43

0

20000

40000

60000

80000

100000

120000

8 16 32 64 128 256 512 1024

L
at

en
cy

 (
cy

cl
es

)

Polynomial length (n)

Total Latency

Department of Electrical & Computer Engineering

NTT Multiplier Latency Comparison

44

0

10000

20000

30000

40000

50000

60000

70000

256 512 1024 2048

L
at

en
cy

 (
cy

cl
es

)

Polynomial length (n)

Our Design Chen et al. Popplemann et al. Aysu et. al.

Department of Electrical & Computer Engineering

Presentation Outline

45

 Motivation: why quantum-proof?

 NIST: steps towards standardization

 State of the Art: main algorithm

 FPGA-based Implementation: primitives

 Evaluation: cost and performance

 Key Contributions: conclusion

Department of Electrical & Computer Engineering

Conclusion
 Implementation

• FGPA-tailored implementation of primitives

 Optimization
• Algorithmic optimizations to reduce hardware cost

 Open Source
• Release of the synthesizable and fully verifiable

Verilog code with following advantages:
 Parameterization

• Enable deployment in small devices as well as large platforms

 Fast Polynomial Multiplier
• Efficient n-point NTT multiplier

46

Department of Electrical & Computer Engineering

Acknowledgements

 All ASCS lab members

47

Department of Electrical & Computer Engineering

Thank you

48

 Code available at:
http://ascslab.org/research/pqcp/index.html

