

Physical Side-Channel Attacks and Covert Communication on FPGAs

Seyedeh Sharareh Mirzargar and Mirjana Stojilović

 École polytechnique fédérale de l'ausanne

Introduction

- Application space keeps growing
- FPGAs run secure primitives and deal with sensitive data

Targets of security attacks since a while

Introduction

- Cloud providers now offer FPGAs
- Growth in FPGA application space inspires discovery of new vulnerabilities

Which of the vulnerabilities are due to FPGA physical properties?

Physical channels

- Several classifications
 - Transmission medium
 - Invasive or noninvasive
 - Require proximity
- Transmission medium as classifier
 - **Power** consumption
 - Crosstalk coupling
 - **Electromagnetic** emission
 - Thermal heating

Physical channels (ab)used for...

...stealing secrets, or so called side-channel attacks:

attacks based on **information** gained from the **implementation** of a computer system, rather than weaknesses in the implemented algorithm itself

Physical channels (ab)used for...

...covert communication

A **covert channel** is a communication channel not normally used in system communications and thus not protected by the system's security mechanisms.

EPFL

- Introduction
- Timeline
- Physical channels
- Vulnerable platforms
- Discussion
- Conclusion

Physical Side-Channel Attacks and Covert Communication on FGPAs

Timeline of key research contributions

Focus shifts towards attacks performed remotely.

EPFL

- Introduction
- Timeline
- Physical channels
- Vulnerable platforms
- Discussion
- Conclusion

Physical Side-Channel Attacks and Covert Communication on FGPAs

Power analysis attacks

• If physical access is available:

Kocher, Paul et al.
"Differential power analysis."
Annual International Cryptology
Conference, 1999.

Örs, Sıddıka Berna, et al.
"Power-analysis attacks on an FPGA
First experimental results."
International Workshop on
Cryptographic Hardware and
Embedded Systems., 2003.

Power analysis attacks

- Recently, demonstrated possible w/o an oscilloscope
- Vulnerable settings:
 - fabric-to-fabric, fabric-to-CPU, FPGA-to-FPGA

- M. Zhao and G. E. Suh, "FPGA-based remote power side-channel attacks," IEEE Symposium on Security and Privacy, 2018
- F. Schellenberg et al. "An inside job: Remote power analysis attacks on FPGAs," DATE 2018
- F. Schellenberg et al. "Remote interchip power analysis side-channel attacks at board-level," ICCAD 2018

On-chip voltage measurements: How-To?

- Not measuring voltage directly, but indirectly
- Change in voltage creates change in **delay**
 - Measure delay

On-chip voltage measurements: How-To?

- Not measuring voltage directly, but indirectly
- Change in voltage creates change in **delay**
 - Measure delay

Crosstalk coupling

- Long wire carrying 1 reduces the propagation delay of the unconnected adjacent long wire
- Measurable if the wires are adjacent, or with at most one wire between
- Used as side channel or covert communication channel

Giechaskiel et al.

"Leaky wires: Information leakage and covert communication between FPGA long wires." Asia Conference on Computer and Communications Security. 2018.

Crosstalk coupling

- Delay of adjacent long wire
 - depends on how long the transmitter carries one
 - independent from the switching frequency
- Sequence of bits can be extracted by
 - sliding window approach
 - comparing Hamming weight of overlapping windows

Electromagnetic emission

- Current flowing through a conductor creates EM signals
 - Radiation
 - Conduction
- Multiple view of events: more powerful than power side channel
- Impossible to attack remotely?

Carlier et al. "Generalizing square attack using side-channels of an AES implementation on an FPGA", FPL 2005

Thermal channel

- Some physical channels keep their state longer
 - Temperature-based covert communication
 - Transmitter and receiver use, for instance, ring oscillators
 - Possible to transmit (very slowly!) data in cloud FPGAs
 - Transmitter heats to send 1
 - Receiver lands on the same FPGA and checks the temperature

lakymchuk et al. "Temperature-based covert channel in FPGA systems." 6th Intl. Workshop on Reconfig. Communication-centric SoC (ReCoSoC), 2011.

Tian et al. "Temporal Thermal Covert Channels in Cloud FPGAs." FPGA 2019.

EPFL

- Introduction
- Timeline
- Physical channels
- Vulnerable platforms
- Discussion
- Conclusion

Physical Side-Channel Attacks and Covert Communication on FGPAs

Comprehensive list of vulnerable platforms

- Experimentally shown vulnerable
- All technology nodes sensitive
- Crosstalk coupling stronger in newer technology nodes

EPFL

- Introduction
- Timeline
- Physical channels
- Vulnerable platforms
- Discussion
- Conclusion

Physical Side-Channel Attacks and Covert Communication on FGPAs

Equipment cost and complexity

- EM attack most complex and costly
- Local power analysis attack is comparably complex but less costly
- Remote attack has the least complexity and cost

Portability

• How much one needs to change the methodology or experimental set-up when the target changes?

Prevention and protection

Prevention

- Local: restricting the access to the device
- Remote: not allow FPGA sharing nor (even) board sharing

Protection

- Local
 - Design countermeasures (hiding, masking)
- Remote
 - Power: detect special primitives (e.g., bitstream analysis)
 - Crosstalk: add space between two circuits
 - Thermal: enforce idle periods between users

Conclusions

- FPGAs vulnerable to side-channel attacks and covert communication
- No perfect countermeasure exits, let alone a universal one
- Can we design FPGAs to be less vulnerable?
- Can we write code for more robust FPGAs?
- Attack space still not exhausted
- Methods to prevent/protect still largely unexplored

Thank you!

mirjana.stojilovic@epfl.ch