Physical Side-Channel Attacks and Covert Communication on FPGAs

Seyyedeh Sharareh Mirzargar
and
Mirjana Stojilović

Barcelona, Spain
September 10, 2019
Introduction

- Application space keeps growing
- FPGAs run secure primitives and deal with sensitive data

Targets of security attacks since a while
Introduction

- Cloud providers now offer FPGAs
- Growth in FPGA application space inspires discovery of new vulnerabilities

Which of the vulnerabilities are due to FPGA physical properties?
Physical channels

- Several classifications
 - Transmission medium
 - Invasive or noninvasive
 - Require proximity

- Transmission medium as classifier
 - **Power** consumption
 - **Crosstalk** coupling
 - **Electromagnetic** emission
 - **Thermal** heating
Physical channels (ab)used for...

...stealing secrets, or so called side-channel attacks:

attacks based on information gained from the implementation of a computer system, rather than weaknesses in the implemented algorithm itself
Physical channels *(ab)*used for...

...covert communication

A **covert channel** is a communication channel not normally used in system communications and thus not protected by the system's security mechanisms.
- Introduction
- Timeline
- Physical channels
- Vulnerable platforms
- Discussion
- Conclusion

Physical Side-Channel Attacks and Covert Communication on FGPAs
Timeline of key research contributions

Focus shifts towards attacks performed remotely.
Physical Side-Channel Attacks and Covert Communication on FGPAs

- Introduction
- Timeline
- Physical channels
- Vulnerable platforms
- Discussion
- Conclusion
Power analysis attacks

- If physical access is available:

Power analysis attacks

- Recently, demonstrated possible w/o an oscilloscope
- Vulnerable settings:

M. Zhao and G. E. Suh, “FPGA-based remote power side-channel attacks,” IEEE Symposium on Security and Privacy, 2018

F. Schellenberg et al. “An inside job: Remote power analysis attacks on FPGAs,” DATE 2018

F. Schellenberg et al. “Remote inter-chip power analysis side-channel attacks at board-level,” ICCAD 2018
On-chip voltage measurements: How-To?

- Not measuring voltage directly, but **indirectly**
- Change in voltage creates change in **delay**
 - Measure delay
On-chip voltage measurements: How-To?

- Not measuring voltage directly, but indirectly
- Change in voltage creates change in delay
 - Measure delay
Crosstalk coupling

- Long wire carrying 1 reduces the propagation delay of the unconnected adjacent long wire
- Measurable if the wires are adjacent, or with at most one wire between
- Used as side channel or covert communication channel

Crosstalk coupling

- Delay of adjacent long wire
 - depends on how long the transmitter carries one
 - independent from the switching frequency
- Sequence of bits can be extracted by
 - sliding window approach
 - comparing Hamming weight of overlapping windows

\[
\text{HW}(W_0) - \text{HW}(W_1) = +1
\]
Electromagnetic emission

- Current flowing through a conductor creates EM signals
 - Radiation
 - Conduction
- Multiple view of events: more powerful than power side channel
- Impossible to attack remotely?

Carlier et al. "Generalizing square attack using side-channels of an AES implementation on an FPGA“, FPL 2005
Thermal channel

- Some physical channels keep their state longer
 - Temperature-based covert communication
 - Transmitter and receiver use, for instance, ring oscillators
 - Possible to transmit (very slowly!) data in cloud FPGAs
 - Transmitter heats to send 1
 - Receiver lands on the same FPGA and checks the temperature

- Introduction
- Timeline
- Physical channels
- Vulnerable platforms
- Discussion
- Conclusion

Physical Side-Channel Attacks and Covert Communication on FGPAs
Comprehensive list of vulnerable platforms

- **Experimentally** shown vulnerable
- All technology nodes sensitive
- Crosstalk coupling stronger in newer technology nodes
Physical Side-Channel Attacks and Covert Communication on FGPAs

- Introduction
- Timeline
- Physical channels
- Vulnerable platforms
- Discussion
- Conclusion
Equipment cost and complexity

- EM attack most complex and costly
- Local power analysis attack is comparably complex but less costly
- Remote attack has the least complexity and cost
Portability

- How much one needs to change the methodology or experimental set-up when the target changes?
Prevention and protection

- **Prevention**
 - Local: restricting the access to the device
 - Remote: not allow FPGA sharing nor (even) board sharing

- **Protection**
 - Local
 - Design countermeasures (hiding, masking)
 - Remote
 - Power: detect special primitives (e.g., bitstream analysis)
 - Crosstalk: add space between two circuits
 - Thermal: enforce idle periods between users
Conclusions

- FPGAs **vulnerable** to side-channel attacks and covert communication
- No perfect countermeasure exits, let alone a universal one
- Can we **design** FPGAs to be less vulnerable?
- Can we **write code** for more robust FPGAs?
- Attack space still not exhausted
- Methods to prevent/protect still largely unexplored
Thank you!

mirjana.stojilovic@epfl.ch