Characterizing Power Distribution Attacks in Multi-User FPGA Environments

George Provelengios, Daniel Holcomb, and Russell Tessier

Department of Electrical and Computer Engineering University of Massachusetts Amherst

(Funded by a grand from Intel's Corporate Research Council)

Department of Electrical and Computer Engineering

Overview

- Two tenants are using simultaneously the device
- Tenant A (attacker) consumes power aggressively in an attempt to induce timing faults in tenant B (victim)
- Threat model:
- Tenants are spatially isolated but share the FPGA power distribution network (PDN)
- Tenants do not have physical access to the board
- The tools used for interacting with the FPGA are secure

Department of Electrical and Computer Engineering

Contribution

- We investigate on-chip voltage attacks and specifically how their impact depends on:
 - Duration of voltage disruption
 - Consumed power by attacker
 - Distance between attacker & victim
- We evaluate the ability of power wasting circuits to induce timing faults to victim
- We examine the use of small on-chip voltage sensors to quickly identify the location of the attacker

- Characterization platform and experimentation setup
- Two DE1-SoC boards (Cyclone V FPGA)
 - > A: for calibrating the sensors
 - B: for characterizing on-chip voltage attacks
- A benchtop power supply for controlling the input voltage
- An oscilloscope for measuring the on-board voltage (testpad VCC1P1)

Terasic DE1-SoC board - Cyclone V FPGA (28nm)

Voltage sensor architecture

- A regular rectangular grid of 46 sensors
- 19 inverting stages:
 Most timing constraint
 - Meet timing constraints
 - Minimize local effects¹
 - ✓ Fit in a single CV LAB
- Resolution: 1 part in 1000

Controller reads and resets all the sensors simultaneously in every sampling period

¹ M. Barbareschi, G. Di Natale, and L. Torres, "Implementation and analysis of ring oscillator circuits on Xilinx FPGAs," in *Hardware Security and Trust.* N. Sklavos, R. Chaves, G. Di Natale, and F. Regazzoni, Eds. Springer, 2017, ch. 12, pp. 237-251

Department of Electrical and Computer Engineering

Sensor calibration

- To use ROs as on-chip voltage sensors:
 - Sweep the input voltage (780mV – 1.1V) and record:
 - ✓ Voltage at FPGA power pin
 - RO counts from on-chip sensors
- Minimize the power drawn by the FPGA during measurements

Department of Electrical and Computer Engineering

Attacker circuitry

- $P_{dyn} = C \times V_{DD}^2 \times f_{SW}$
- 1-stage ROs as power wasters
- In an area of 1,408 LABs (44x32) fit up to 12K PWs
- Placed uniformly at random locations in the attack area
- Power/instance is diminished as the number of PWs increases

Department of Electrical and Computer Engineering

Physical characterization of voltage drop

- Characterize disturbance as a function of:
 - disruption time
 - distance to center of PW (7 locations examined)

Physical characterization of voltage drop

- Characterize disturbance as a function of:
 - disruption time

Onboard

Regulator

- distance to center of PW (7 locations examined)
- Voltage drop across the onboard inline inductor

9

Department of Electrical and Computer Engineering

University of Massachusetts Amherst

 $V_I = L di/dt$

Intensity and distance

- Power consumed by attacker (160PWs -> 12K PWs)
- The 83mV voltage drop across the inductor impacts every part of the chip
- The victim will notice the drop regardless of its location on the chip

53 columns away the voltage drops to 967mV in the strongest attack

Characterizing timing faults

- Voltage drop causes delay of combinational logic to increase
- Wrong values captured if paths do not complete before capturing clock edge arrives
- Must overcome conservative timing models
- Use ripple carry adder as a representative test circuit can sensitize any desired path length

Inducing timing faults

- 12K PWs randomly placed in an area of 1,408 LABs
 (44x32)
- Examine different distances in respect to attack center:
 - 22, 26, 30, 35, 38, 42, 47, 50, and 54 LAB columns away
 - Sensitize different path lengths: 49, 54, 59, 64, 69, and 74
- Faults occurred even in 42 columns away

Undershoot Steady state

Mapping the on-chip voltage drop

- Using 46 on-chip sensors for deriving the voltage contours of the chip
- Varying the magnitude of disturbance and location of attacker
- Center of attack:
 - 12K PWs: 825mV
 - 3.2K PWs: 975mV
- Farthest corner of the chip:
 - 12K PWs: 975mV
 - 3.2K PWs: 1.050V

Department of Electrical and Computer Engineering

Locating the attack area

- The disturbance of the shared PDN reveals the location of the attacker
- Evaluate how many sensors required to find its location
- 20 sensors are sufficient to , identify the attacker

Resource utilization: Cyclone V 5CSEMA5F31C6

Num. RO	ALMs	Flip-flops
Sensors	(Avail.:32,070)	(Avail.: 128,280)
10	390 (1.2%)	200 (<1%)
20	780 (2.4%)	400 (<1%)
30	1,170 (3.6%)	600 (<1%)
40	1,560 (4.9%)	800 (<1%)
46	1,794 (5.6%)	920 (<1%)
Controller	430 (1.3%)	111 (<1%)

Department of Electrical and Computer Engineering

Summary

- Using a small number of RO-based on-chip sensors we characterized onchip FPGA voltage attacks
- Combining *iR* voltage drop with drop caused by inductance can be used to attack circuits far from the power wasting area
- Spatial isolation between tenants is insufficient for protecting against PDN attacks
- A malicious tenant cannot mask its identity and can be located with less than 5% of FPGA logic

UMassAmherst Thank You

Questions?

- Using a small number of RO-based onchip sensors we characterized on-chip FPGA voltage attacks
- Combining *iR* voltage drop with drop caused by inductance can be used to attack circuits far from the power wasting area
- Spatial isolation between tenants is insufficient for protecting against PDN attacks
- A malicious tenant cannot mask its identity and can be located with less than 5% of FPGA logic

