Quantifying the Benefits of Dynamic Partial Reconfiguration for Embedded Vision Applications

Marie Nguyen, Robert Tamburo, Srinivasa Narasimhan, James C. Hoe
Carnegie Mellon University

September 9, 2019
FPGAs mostly used as substitutes for ASICs.

Less power/energy efficient than ASIC

Runtime reprogrammable 😊

Use REprogrammability to be more than substitute for ASICs
Realtime and Interactive Applications

- Many different tasks not needed at the same time.
- Efficiency (area, cost, power and energy) as important as meeting performance requirements.

Mapping tasks statically on a large FPGA is inefficient.
A dynamic solution on a small FPGA is more efficient than a static solution on a large FPGA.
Quantify DPR Benefits on Smaller FPGA vs Static Mapping on Larger FPGA

- Two apps. w/ real-time requirements (60 fps@1080p).

 Interactive app
 - 4 sets of tasks (15 tasks total)
 - **Infrequent** reconfigurations (minute to hour reconfig. interval)

 Navigation app
 - 6 sets of tasks (6 tasks total)
 - **Frequent** reconfigurations (millisecond reconfig. interval)

⇒ How much savings in area, device cost, power, energy?
⇒ How much when ratio of reconfig. to compute 1:1?
Area, Cost and Power/Energy Savings

- Interactive application
 - ~3x logic saving (10x $ saving in parts cost)
 - ~30% power/energy saving

- Navigation application
 - ~3.5x logic saving (7x $ saving in parts cost)
 - ~30% power/energy saving even when ratio of reconfig. to compute 1:1
For more information, come to the poster session.

Thanks!