Quantifying the Benefits of Dynamic Partial Reconfiguration for Embedded Vision Applications

Marie Nguyen, Robert Tamburo, Srinivasa Narasimhan, James C. Hoe Carnegie Mellon University

September 9, 2019

FPGAs mostly used as substitutes for ASICs.

Less power/energy efficient than ASIC

Runtime reprogrammable

Use REprogrammability to be more than substitute for ASICs

Realtime and Interactive Applications

- Many different tasks not needed at the same time.
- Efficiency (area, cost, power and energy) as important as meeting performance requirements.

Why not time-share tasks on smaller FPGAs with dynamic partial reconfiguration?

A dynamic solution on a small FPGA is more efficient than a static solution on a large FPGA.

Quantify DPR Benefits on Smaller FPGA vs Static Mapping on Larger FPGA

■ Two apps. w/ real-time requirements (60 fps@1080p).

Interactive app

- 4 sets of tasks (15 tasks total)
- Infrequent reconfigurations
 (minute to hour reconfig. interval)

Navigation app

- 6 sets of tasks (6 tasks total)
- Frequent reconfigurations (millisecond reconfig. interval)
- ⇒How much savings in area, device cost, power, energy?
- ⇒How much when ratio of reconfig. to compute 1:1?

Area, Cost and Power / Energy Savings

- Interactive application
 - ~3x logic saving (10x \$ saving in parts cost)
 - ~30% power/energy saving
- Navigation application
 - ~3.5x logic saving (7x \$ saving in parts cost)
 - ~30% power/energy saving even when ratio of reconfig. to compute 1:1

For more information, come to the poster session.

Thanks!

