AN FPGA-BASED ARCHITECTURE TO SIMULATE CELLULAR AUTOMATA WITH LARGE NEIGHBORHOODS IN REAL TIME

NIKOLAOS KYPARISSAS, APOSTOLOS DOLLAS

School of Electrical and Computer Engineering Technical University of Crete, Chania, Greece

nkyparissas@isc.tuc.gr, dollas@ece.tuc.gr

FPL 2019 - Sept 9 - Barcelona, Spain

...STARTING FROM THE END...

The Hodgepodge Machine with a 29X29 neighborhood

...but, the Cellular Automaton which is commonly known as the Hodgepodge Machine is really the Belousov-Zhabotinsky Reaction "a classical example of non-equilibrium thermodynamics, resulting in the establishment of a nonlinear chemical oscillator"

SIMULATION EXAMPLES

Example: The Hodgepodge Machine

- Normally a q-state CA with a 3 \times 3 Moore neighborhood
- Extended to a CA with a 29 x 29 Moore neighborhood
- A cell can be "healthy" (state 0), "infected" (states I to q-I) or "ill" (state q). In our example: q = 255.

The cell's transition function is defined as:

$$c_{t+1}(i,j) = \begin{cases} \frac{\text{number of infected}}{\text{and ill neighbors}} & \text{if } c_t(i,j) = 0 \\ 0 & \text{if } c_t(i,j) = q \\ \frac{\text{sum of all neighbors}}{\text{sum of infected neighbors}} + g & \text{otherwise} \end{cases}$$

SIMULATION EXAMPLES

Example:

The Greenberg-Hastings Model

with 16 states per cell.

- I. r = I Von Neumann,
- 2. r = 14 von Neumann,
- 3. r = 14 Circular

Qualitative differences:

vortices become curved and wider.

CHANGING THE GAME: ANISOTROPIC RULES

Example:

Anisotropic Rule with 256 states per cell,

r = 14 Moore

- I. I generation
- 2. 120 generations
- 3. 500 generations
- 4. 10000 generations
- Self-organization properties
- Not possible with small, r = 1 neighborhoods

NEW CAPABILITIES

Example:

The Hodgepodge Machine

with 256 states per cell.

- I. r = I Moore,
- 2. r = 9 Moore,
- r = 14 Moore

Qualitative differences:

- Vortices become wider
- Small, stable, vortex-like patterns located in the center of the larger vortices

FPGAS AND CELLULAR AUTOMATA: A VERY OLD (BUT CHANGING) STORY

- I. Toffoli and Margolus's Cellular Automata Machines (CAM): 1980s and 1990s
 - Streaming architecture using LUTs to calculate the transition function
- 2. Cellular Processing Architecture (CEPRA): 1990s
 - Streaming architecture using arithmetic logic to calculate the transition function
- 3. Scalable Parallel Architecture for Concurrency Experiments (SPACE): 1996
 - Implementing the CA as an array of Processing Elements (PE) within the FPGA
- 4. Kobori, Maruyama and Hoshino: 2001
 - A streaming architecture using an array of PEs to calculate the CA
- 5. Many other significant projects since then, most of which have been custom to a specific CA rule without the use of large neighborhoods

FPGAS AND GPU'S - CROSSOVER AT 11 X 11

Architecture	Neighborhood Size	Performance
Margolus, 1993-2001, CAMs	experimented with up to IIxII	10 gen./sec for a 512x512 grid with 3-bit cells
Gibson et al., 2015, Workstation with Nvidia GTX 560 Ti	experimented with up to IIxII	≈ 65x over serial for Game of Life on a 2048x2048 grid
Millan et al., 2017, Nvidia TitanX GPU	experimented with up to IIxII	21.1x over serial for Game of Life on a 4096x4096 grid
Kyparissas & Dollas, 2019, Artix-7 FPGA	experimented with up to 29x29	51x over serial for the Hodgepodge Machine on a 1920x1080 grid

- FPGAs: "game changer" as far as large-neighborhood CA are concerned
- Today's FPGAs can simulate complex rules with very large neighborhoods on very large grids

PERFORMANCE RESULTS (WITH A MODEST FPGA)

Cellular Automaton	i7 – 7700 HQ, 1000 generations	Our Design, 1000 generations	Speedup of Our Design
Artificial Physics, 21 x 21	538.77 sec	16.67 sec	32x
Greenberg- Hastings Model, 29 x 29	469.58 sec	16.67 sec	28×
The Hodgepodge Machine, 29 x 29	851.29 sec	16.67 sec	51×

DESIGN AND ARCHITECTURE

For a kXk neighborhood applied to a nXn data grid:

- (k-1)Xn + k input data points on-FPGA
- kXk weights on-FPGA
- Rules compiled in w/ a tool
- Each piece of data enters FPGA once
- kXk parallelism

System specifications:

- Initialization via UART / USB
- 1080p Full-HD Graphical Display
- Datapath running at 200 MHz

DESIGN AND ARCHITECTURE

The CA Engine's Buffer:

- Receives memory bursts at 81.25 MHz
- Sends cells at 200 MHz
- Each cell needs to enter the FPGA only once per CA generation

RESOURCE UTILIZATION

Resource	Utilization	Utilization %
LUT	20375	32.14
LUTRAM	1555	8.18
FF	27224	21.47
BRAM	65	48.15
DSP	I	0.42
IO	73	34.76
BUFG	7	21.88
MMCM	3	50
PLL	I	16.67

THE DESIGN PROCESS FROM THE DESIGNER'S PERSPECTIVE

- This video is from the 2018 Xilinx Hardware Design Competition
- The neighborhood is not yet 29X29 but the design process remains the same
- This design placed in the top-12 among more than 100 entries, however it has not been published to date
- The example is from Artificial Physics

Xilinx Open Hardware 2018 Design Contest

A Parallel Framework for Simulating Cellular Automata on FPGA Logic

Participant: Nikolaos Kyparissas Supervisor: Prof. Apostolos Dollas

Team number: XOHW18-220

https://github.com/nkyparissas/XOHW18