Dataflow acceleration of Smith-Waterman with Traceback for high throughput Next Generation Sequencing

Konstantina Koliogeorgi*, Nils Voss†, Sotiria Fytraki†, Sotirios Xydis*, Georgi Gaydadjiev†, Dimitrios Soudris*

* National Technical University of Athens, Greece, <u>{konstantina, sxydis, dsoudris}@microlab.ntua.gr</u>

Maxeler Technologies UK <u>{nvoss, sfytraki, georgi}@maxeler.com</u>

Genome Sequencing

- Genome represents entire genetic information of an organism
- Next-Generation Sequencing technologies allow to compare individual to reference genome
- Typical genomic workflow e.g. SeqMule
 - short read alignment: reads ~100 bases long

Operate on huge amount of data

Aligners Bottleneck in Workflow => in need of acceleration!

Problem Statement

- Most Aligners utilize Seed & Extend Model
 - Fragment reads into short pieces (seeds) that align exactly to genome
 - Extend seeds to full alignment with SmithWaterman
- SmithWaterman
 - Matrix Fill Stage followed by Traceback
 - Takes up 60% (55% + 5% respectively)
 of total time
 - Distributed over hundreds of tasks per read
 - calling & data transfer overhead

- Challenge
 - Co-designed Solution to avoid overhead
 - Extract parallelism to further boost performance

Standalone Optimized Dataflow Implementation

- Matrix Fill Calculates Matrices E,H,F
- Traceback traverses matrices in reverse order to construct alignment path

- Interleaving Data Scheme
 - Interlace data from subsequent read-reference pairs
- Double Buffering
 - operate in pipeline fashion

Proposed Integration Architecture

Key Architectural Decisions

- Move Traceback on Hardware to alleviate transfer cost
- Major Software Restructure to constraint number of accelerator calls

Results

- x18 speedup standalone
- x1,55 speedup end to end

Thank you for your attention!