On-The-Fly Parallel Data Shuffling for Graph
Processing on OpenCL-based FPGAs

Xinyu Chen', Ronak Bajaj', Yao Chen?, Jiong He3,
Bingsheng He', Weng-Fai Wong?!, Deming Chen#

"National University of Singapore, ?Advanced Digital Sciences Center,
3Alibaba Group, “University of Illinois at Urbana-Champaign

of Singapore

BE &
smsch 22 EBNUS ILLINOIS
‘/ Alibaba Group @ National University UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

1

: FINUS
Graph processing on FPGAs 95 e

* Graph processing is widely used in variety of application
domains.

* Social networks
e Cybersecurity
« Machine learning

« Accelerating graph processing on FPGA has attracted a
lot of attention benefiting from:

* Fine grained parallelism
* Low power consumption
« Extreme configurability

S
EANUS
95

National University

Graph processing on HLS-based FPGAs

* Previous RTL-based FPGAs development.
* Time-consuming
« Deep understanding of hardware

 To ease the use of FPGASs, HLS tools have been proposed.
* High-level programming model
* Hide hardware detalils
* Both Intel and Xilinx have HLS tools

 Graph processing on OpenCL-based FPGAs.

of Singapore

graph processing 95 NUS

ﬂﬂﬂﬂﬂ
gy)

9
8

GAS model fo

« Scatter: for each edge, an update
tuple is generated with the format
of <destination, value>.

« E.g. <2, x>, <7, y>for vertex 1

a’ « Gather: accumulate the value to

destination vertices.

Fxample graph \ Q + E.g. Op(P,, x), Op(P; , y)
« Apply: an apply function on all
read read Tl write read lerlte the Vel'tICeS
Property | P, | P, | P, | Py | P, | Ps | P | P,

Memory accesses (vertex 1 as the example)

A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel, “Chaos: Scale-out graph processing from secondary
storage,” in SOSP, 2015 4

..................

GAS model on FPGASs NUS

 BRAM caching
« avoid random memory accesses to property array.
* Multiple PEs

« each PE processes a part of cached data and runs
independently.

Update tuples to process for vertex 1
<2,x>, <7, y>

Example graph EGGRETEEEEE R e .
] Data shuffling I
..................... LU |
PE 0 . I PEI
____________________ | update i v wpdate]
p,| P [P, [P |} ilp, P | P, | P,

Property [p, [P, [P, | P, | P, | P | P, | P, mBRAM | || IBRAM

Data shuffling

National University

 Widely used for irregular applications.

 The data generated with format of <dst, value> is dispatched
to ‘dst’ PEs to process.

« Challenges:
* Run-time data dependency
« Parallelism

Stage 0 PEo || PE+ || PE2 || PEs || PE4 || PEs || PEs || PE~

Datatuples | DO || D1 || D2 || D3 || D4 || D5 || D6 || D7

Stage 1

* Arrows with different colours show a few shuffling examples.

OpenCL does not natively support shuffling

National University

* Fine-grained control logic is not available for OpenCL.
* No vendor-specific extension for shuffling [1].

 OpenCL only does static analysis at compile time, thus
cannot extract parallelism in functions with run-time

dependency [2].

[1] Kapre, Nachiket, and Hiren Patel. "Applying Models of Computation to OpenCL Pipes for FPGA
Computing." Proceedings of the 5th International Workshop on OpenCL. ACM, 2017.

[2] Z. L1, L. Liu, Y. Deng, S. Yin, Y. Wang, and S. Wei, “Aggressive pipelining of irregular applications on
reconfigurable hardware,” in ISCA, 2017. 7

Potential shuffling solutions with OpenCL sgN>

||||||||||||||||||
ingapore

* Polling
« Each PE checks the tuples serially.
* '‘Bubbles’ are introduced.

« 8 cycles for dispatching a set of 8 tuples.

Stage 0 PE, || PE, || PE, || PE; || PE, || PES || PEs || PE;
Bubbles!
o [)CIALN AL

Stage 1 PEo || PE+ || PE2 || PEs || PE4 || PEs || PEs || PE-

Potential shuffling solutions with OpenCL (sghY>

« Convergence kernel from [1]
 Each PE writes wanted tuples to local BRAM in parallel.
* The run-time data dependency is not resolved.
« Initiation interval (ll) equals to 284 cycles.

Conflicts! lllvull Pfol[Pf sz Pf3 Pf4 Pfs PEG Pf Stage 0

l DO || D1 || D2 || D3 || D4 || DS || D6 || D7 | Data tuples

Processing
logic

PE,][PEs || PE4 || PEs || PEs || PE- Stage 1

[1] Wang, Zeke, et al. "Multikernel Data Partitioning With Channel on OpenCL-Based FPGAs." IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 25.6 (2017): 1906-1918. 9

Insights 95 U

* Polling: introduces ‘bubbles’.

« Convergence kernel: the run-time dependency is still
there.

 What if we know the positions and number of wanted
tuples?
* PEs can directly access the wanted tuples.
* Cycles needed equal to number of wanted tuples.

 How to know the positions and number of wanted tuples?
* Decoder based solution.

« E.g. 28 possibilities, for a set of 8 tuples, since each tuple
has two statuses only.

10

Proposed shuffling 95 U

 Calculate the destination PEs. Tupls. |]

Index 7 6 S

43| 2]1 oJ
iy 7 y
l I E. (01000100) :
Destination PEs [1 0 2 2 3: (1J gggggggga :j + :
¢ C t 8 b-t MASK b :1;ooooooo1z—> :
Ompu e an - I y Tuples | | : |
5

1 (2; 000000625) —m 256x1

. Number; |
4 3) Decodef ™ Positions

|
Index 7 6 E. (2; 00000062s)|

comparing destination PEs |

|

| |
| 7;06543210 ——~ :
|

with the id of current PE, 0. v [rapg vneone —7 |

. . §

MASK | off 1fofo]off1]o]fo » Decoder

. Decode the positions and . 1
number of wanted tuples. ‘ ‘ |
L

Pos=2,6;
T Filter

for i = 0 to num do

* Collect the wanted tuples e e
write channel (gPE, tuple);
without “bubbles”. end for

An example for a set of 8 tuples on PE, ‘

11

Proposed shuffling O
 No ‘bubbles’ - no cycle wasted on unwanted tuples.
* Resolve the run-time dependency.

« All the modules are pipelined.

12

Proposed graph processing framework TINUS
with shuffle

DDR - Sy T T~ |
AR N4 7 v
v : aPEo aPE; | eee |aPE. :
v v v . v v ¥ |
sPE, sPE, e 0o 0 SPEN.-1 Apply | 7"~~~ ~~"~"“~~"~""~""~"~"~""~"~"~—777
Scatter+ + *
A
Shuffle v (<D0!V0>v teey <DNYVN>)
| N-way PE selection |
(<Do,VoHo>, ..., <Dn.1,Vn-1,Hn.1>)
\ 4
| Data Duplication |
\ 4
Validationg Validation; o o o Validationyn.4
_____________________ I
Decoder, Decoder; [@ © @ Decodersy.1 /Ir (2) | d 1 J |
| |
+ v + v + | Funcg Funci| e e ¢ | Funcona Funcon-1 I
Filter, Filter, o oo Filteray.1 : (2) :
: Co C4 LR Cono Cont I
v v L7 1 (1) © :
gPEo gPE;) gPEan.1 I T70 [1 Jeeo] 2N2 [2N1] |
| -
Y (2N*32-bit) / read JLF !
athor. y y | ATdE |
\ 4
DDR }

13

N
Experimental configuration 95 NUS

of Singapore

 Our experiments are conducted on a Terasic DE5-Net board.
 BFS, SSSP, PageRank and SpMV are used as applications.

TABLE I: Details of hardware.
FPGA Altera Stratix V GX
OpenCL Intel FPGA SDK 16.1 for OpenCL
Memory Bandwidth | 17GB/s (Peak); 12.5GB/s (at 200MHZ)

TABLE II: Graph dataset.

Graphs 1% E Davg | Dmax
rmat-19-32 (R19) [34] 524K | 17M 32 90K
rmat-21-32 (R21) [34] 2M 67M 32 211K
mouse-gene (MG) [35] 43K 14.5M | 670 8K
web-google (GG) [35] 875K | 5.IM 11 6.4K
pokec (PK) [35] 1.6M | 31M 37 20K
wiki-talk (WT) [35] 2M SM 4 100K
live-journal (LJ) [35] 4.8M | 6OM 13 3K
twitter-2010 (TW) [35] | 41M 1.4B 35 770K

[34] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, “Kronecker graphs: An approach to
modeling networks,” JIMLR, 2010.

[35] R. A. Rossi and N. K. Ahmed, “The network data repository with interactive graph analytics and visualization,” in
AAALI, 2015. 14

Efficiency of shuffle 95>

ooooooooooo

* Theoretical throughput = memory_bandwidth / tuple_size
 The performance is close the theoretical throughput.

o C—Measured throughput ZaTheoretical throughput =>~Bandwidth utilization

@ 4000 - - 100%
Q

=)

s 3200 - - 80%
S

= 2400 - - 60%
5

e 1600 A - 40%
(®)]

>

o

b= 800 - - 20%
|_

0 - — 0%
64B (1) 32B (2) 16B (4) 8B (8) 4B (16)

#tuple size (#tuple number per cycle)

15

Efficiency of shuffle

* The throughput of our shuffle is much higher than
existing shuffling solutions.

o a[1] O Polling O This paper
3 1600 -

o

2

_5 1200 A

E

5 800 -

Q.

<

()}

o

= 400 A

|_

0 N N
8B(8) 16B(4) 32B(2) 64B(1)

#tuple size (#tuple number per cycle)

[1] Wang, Zeke, et al. "Multikernel Data Partitioning With Channel on OpenCL-Based FPGAs." IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 25.6 (2017): 1906-1918. P

End to end performance

National University

« Compare the performance of graph frameworks with
different shuffling solutions.

« Speedup of PageRank is up to 100x of [1], and 6x of
Polling.

@[1] ©OPolling OThis paper
120 -

©
o
!

Speedup

(o))
o
!

R21 R19 PK LJ MG TW GG WT

[1] Wang, Zeke, et al. "Multikernel Data Partitioning With Channel on OpenCL-Based FPGAs." IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 25.6 (2017): 1906-1918. 17

Resource utilization

- BRAMSs are well utilized for vertex caching.
* PR and SpMV consume DSPs.

TABLE III: Resource utilization and frequency.

Algo. Freq.(Mhz) | BRAM Logic DSP

PR 171.5 2,329 91%) | 125,811 (54%) | 8 (3%)
SpMV | 1654 2,394 (94%) | 125,854 (54%) | 8 (3%)
BFS 172.6 2,030 (79%) | 127,085 (54%) | 0 (0%)
SSSP 170.6 1,926 (75%) | 123,457 (53%) | 0 (0%)

National University

Compare with RTL-based works

 Our approach achieves throughput that is comparable or
even better than RTL-based graph processing designs.

TABLE V: Comparison with state-of-the-art implementations.

Algo. Graph | Others Throughput | Ours | Impro.
L ForeGraph [14] 1193 | 1110 | 0.93x
PR WT [11] 279 584 | 2.09x
GG [11] 317 838 | 2.64X
SpMV | WT GraphOps [38] 190 551 | 2.90x
SSSP WT [13] 657 618 | 0.94x
L] [13] 872 | 1129 | 1.29%

[11] S. Zhou, C. Chelmis, and V. K. Prasanna, “Optimizing memory performance for FPGA implementation of
pagerank.” in ReConFig, 2015.

[13] S. Zhou, C. Chelmis, and V. K. Prasanna, “High-throughput and energyefficient graph processing on FPGA,” in
FCCM, 2016.

[14] G. Dai, T. Huang, Y. Chi, N. Xu, Y. Wang, and H. Yang, “Foregraph: Exploring large-scale graph processing on
multi-FPGA architecture,” in FPGA, 2017.

[38] T. Oguntebi and K. Olukotun, “Graphops: A dataflow library for graph analytics acceleration,” in FPGA, 2016.

19

National University

Conclusion

« Data shuffling on OpenCL-based FPGAs is challenging due
to the run-time data dependency.

 We propose an efficient OpenCL-based data shuffling
method.

 The performance of graph processing framework
integrated our shuffling is comparable to state-of-the-art
RTL based works.

National University

Acknowledgement

* This work is supported by a MoE AcRF Tier 1 grant
(T1 251RES1824) and Tier 2 grant (MOE2017-T2-1-122)
in Singapore. This work is also partly supported by
the National Research Foundation, Prime Minister’s
Office, Singapore under its Campus for Research
Excellence and Technological Enterprise (CREATE)
programme, and the SenseTime Young Scholars
Research Fund.

« We also thank Intel for hardware accesses and
donations.

21

National University

of Singapore

Data shuffling on RTL-based FPGAs o

* Fine-grained control logic based NoCs.

Stage 0 PEo || PE+ || PE2 || PEs || PE4 || PEs || PEs || PE7

Y VvV VvV v v v v v

Data tuples | DO || D1 || D2 || D3 || D4 || D5 || D6 || D7
Y Vv VvV VvV VvV Vv Vv Vv

Routing network
vV VY vV V VY 2 vV VY

Stage 1 PEo || PE+ || PE2 || PEs || PE4 || PEs || PEs || PE7

Outline 95 U

* Introduction to data shuffling
« Data shuffling on OpenCL-based FPGAs
* Motivations
* Design and implementation
* Graph processing framework with proposed shuffling
- Evaluation

e Conclusion

 Acknowledgement

