
On-The-Fly Parallel Data Shuffling for Graph
Processing on OpenCL-based FPGAs

Xinyu Chen1, Ronak Bajaj1, Yao Chen2, Jiong He3, 

Bingsheng He1, Weng-Fai Wong1, Deming Chen4

1

1National University of Singapore,  2Advanced Digital Sciences Center,
3Alibaba Group, 4University of Illinois at Urbana-Champaign 



Graph processing on FPGAs

• Graph processing is widely used in variety of application 
domains.

• Social networks 
• Cybersecurity
• Machine learning  

• Accelerating graph processing on FPGA has attracted a 
lot of attention benefiting from:

• Fine grained parallelism
• Low power consumption
• Extreme configurability

2



• Previous RTL-based FPGAs development.

• Time-consuming
• Deep understanding of hardware  

• To ease the use of FPGAs, HLS tools have been proposed.

• High-level programming model
• Hide hardware details
• Both Intel and Xilinx have HLS tools

• Graph processing on OpenCL-based FPGAs.

3

Graph processing on HLS-based FPGAs



GAS model for graph processing

• Scatter: for each edge, an update 
tuple is generated with the format 
of <destination, value>.

• E.g. <2, x>, <7, y> for vertex 1

• Gather: accumulate the value to 
destination vertices.

• E.g. Op(P2 , x), Op(P7 , y)

• Apply: an apply function on all 
the vertices.

A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel, “Chaos: Scale-out graph processing from secondary 
storage,” in SOSP, 2015 4

P0 P1 P2 P3 P4 P5 P6 P7
Property

1

7

2

3

Example graph 

Memory  accesses (vertex 1 as the example)

read write writeread read



GAS model on FPGAs

• BRAM caching

• avoid random memory accesses to property array.
• Multiple PEs

• each PE processes a part of cached data and runs 
independently.

5

1

7
2

3

Example graph 

P0 P1 P2 P3 P4 P5 P6 P7
Property

Memory  accesses (vertex 1 as the example)

read write writeread read

PE 0

P0 P1 P2 P3 P4 P5 P6 P7

update update

<2, x>,   <7, y> 

PE 1

Update tuples to process for vertex 1

In BRAM In BRAM

Data shuffling



Data shuffling

• Widely used for irregular applications.

• The data generated with format of <dst, value>  is dispatched  
to ‘dst’ PEs to process. 

• Challenges:

• Run-time data dependency
• Parallelism

6

Data tuples D0

PE0

D1

PE1

D2

PE2

D3

PE3Stage 1

D4

PE4

D5

PE5

D6

PE6

D7

PE7

PE0 PE1 PE2 PE3Stage 0 PE4 PE5 PE6 PE7

* Arrows with different colours show a few shuffling examples. 



7

OpenCL does not natively support shuffling

• Fine-grained control logic is not available for OpenCL.

• No vendor-specific extension for shuffling [1].

• OpenCL only does static analysis at compile time, thus 
cannot extract parallelism in functions with run-time 
dependency [2].

[1] Kapre, Nachiket, and Hiren Patel. "Applying Models of Computation to OpenCL Pipes for FPGA 
Computing." Proceedings of the 5th International Workshop on OpenCL. ACM, 2017.
[2] Z. Li, L. Liu, Y. Deng, S. Yin, Y. Wang, and S. Wei, “Aggressive pipelining of irregular applications on 
reconfigurable hardware,” in ISCA, 2017. 



D6D2

Potential shuffling solutions with OpenCL

• Polling

• Each PE checks the tuples serially. 

• ‘Bubbles’ are introduced.

• 8 cycles for dispatching a set of 8 tuples.

8

D0

PE0

D1

PE1

D2

PE2

D3

PE3Stage 1

D4

PE4

D5

PE5

D6

PE6

D7

PE7

PE0 PE1 PE2 PE3Stage 0 PE4 PE5 PE6 PE7

Data tuples   
Bubbles!



D0

PE0

D1

PE1

D2

PE2

D3

PE3 Stage 1

D4

PE4

D5

PE5

D6

PE6

D7

PE7

PE0 PE1 PE2 PE3 Stage 0PE4 PE5 PE6 PE7

Data tuples

Processing 
logic

Potential shuffling solutions with OpenCL

• Convergence kernel from [1]

• Each PE writes wanted tuples to local BRAM in parallel. 

• The run-time data dependency is not resolved.

• Initiation interval (II) equals to 284 cycles.

9

[1] Wang, Zeke, et al. "Multikernel Data Partitioning With Channel on OpenCL-Based FPGAs." IEEE 
Transactions on Very Large Scale Integration (VLSI) Systems 25.6 (2017): 1906-1918.

Conflicts!



• Polling: introduces ‘bubbles’. 

• Convergence kernel: the run-time dependency is still 
there. 

• What if we know the positions and number of wanted 
tuples? 

• PEs can directly access the wanted tuples.
• Cycles needed equal to number of wanted tuples.

• How to know the positions and number of wanted tuples?

• Decoder based solution.
• E.g. 28 possibilities,  for a set of 8 tuples, since each tuple 

has two statuses only.

10

Insights



Proposed shuffling  

• Calculate the destination PEs.

• Compute an 8-bit MASK by 

comparing destination PEs 

with the id of current PE, 0.

• Decode the positions and 

number of wanted tuples.

• Collect the wanted tuples 

without “bubbles”.

11

An example for a set of 8 tuples on PE0

7 6 5 4 3 2 1 0Index

Tuples

Decoder

Num=2;
Pos=2,6;

Filter

Destination PEs 1 0 2 2 3 0 9 11

7 6 5 4 3 2 1 0Index

Tuples

 hash_val == PE_ID? 1:0; 

0 1 0 0 0 1 0 0MASK

Tuples

7 6 5 4 3 2 1 0Index

Validate :

MASK 
E. (01000100)

0; 000000008

1; 000000008

1; 000000018

7; 065432108

8; 765432108

Number; 
Positions
E. (2; 000000628) 

(2; 000000628)

MASK 
E. (01000100)

0; 000000008

1; 000000008

1; 000000018

7; 065432108

8; 765432108

Number; 
Positions
E. (2; 000000628) 

(2; 000000628)



Proposed shuffling 

• No ‘bubbles’ - no cycle wasted on unwanted tuples.

• Resolve the run-time dependency.

• All the modules are pipelined. 

12



Proposed graph processing framework 
with shuffle

13

Validation0

Decoder0

Filter0

gPE0

Validation1

Decoder1

Filter1

gPE1

Validation2N-1

Decoder2N-1

Filter2N-1

gPE2N-1

Shuffle

Gather

N-way PE selection

(<D0,V0,H0>, …, <DN-1,VN-1,HN-1>)

DDR

(<D0,V0>, …, <DN,VN>)

Scatter

Data Duplication

DDR

aPE0 aPE1 aPEx-1

sPE0 sPE1 sPEN-1

Func0 Func2N-2

C0 C1 C2N-2 C2N-1

0 1 2N-2 2N-1

(2N*32-bit) / read 1 3

1 3

2

2

Apply

Func1 Func2N-1



Experimental configuration 

14

• Our experiments are conducted on a Terasic DE5-Net board.

• BFS, SSSP, PageRank and SpMV are used as applications.

[34] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, “Kronecker graphs: An approach to 
modeling networks,” JMLR, 2010.
[35] R. A. Rossi and N. K. Ahmed, “The network data repository with interactive graph analytics and visualization,” in 
AAAI, 2015.



Efficiency of shuffle 

• Theoretical throughput = memory_bandwidth / tuple_size

• The performance is close the theoretical throughput.

15

0%

20%

40%

60%

80%

100%

0

800

1600

2400

3200

4000

64B (1) 32B (2) 16B (4) 8B (8) 4B (16)

T
h

ro
u

g
h

p
ut

: m
ill

io
n

 tu
p

le
s 

/s

#tuple size (#tuple number per cycle)

Measured throughput Theoretical  throughput Bandwidth utilization



Efficiency of shuffle

• The throughput of our shuffle is much higher than 
existing shuffling solutions.

16

0

400

800

1200

1600

8B(8) 16B(4) 32B(2) 64B(1)

T
h

ro
u

g
h

p
ut

: m
ill

io
n

  t
u

p
le

s 
/s

#tuple size (#tuple number per cycle)

[1] Polling This paper

[1] Wang, Zeke, et al. "Multikernel Data Partitioning With Channel on OpenCL-Based FPGAs." IEEE 
Transactions on Very Large Scale Integration (VLSI) Systems 25.6 (2017): 1906-1918.



End to end performance

• Compare the performance of graph frameworks with 
different shuffling solutions.

• Speedup of PageRank is up to 100× of [1], and 6× of 
Polling.

17

1 1 1 1 1 1 1 1
0

30

60

90

120

R21 R19 PK LJ MG TW GG WT

S
p

e
e

d
u

p

[1] Polling This paper

[1] Wang, Zeke, et al. "Multikernel Data Partitioning With Channel on OpenCL-Based FPGAs." IEEE 
Transactions on Very Large Scale Integration (VLSI) Systems 25.6 (2017): 1906-1918.



Resource utilization

18

• BRAMs are well utilized for vertex caching.

• PR and SpMV consume DSPs.  



Compare with RTL-based works

• Our approach achieves throughput that is comparable or 
even better than RTL-based graph processing designs.

19

[11] S. Zhou, C. Chelmis, and V. K. Prasanna, “Optimizing memory performance for FPGA implementation of 
pagerank.” in ReConFig, 2015. 
[13] S. Zhou, C. Chelmis, and V. K. Prasanna, “High-throughput and energyefficient graph processing on FPGA,” in 
FCCM, 2016. 
[14] G. Dai, T. Huang, Y. Chi, N. Xu, Y. Wang, and H. Yang, “Foregraph: Exploring large-scale graph processing on 
multi-FPGA architecture,” in FPGA, 2017. 
[38] T. Oguntebi and K. Olukotun, “Graphops: A dataflow library for graph analytics acceleration,” in FPGA, 2016. 



Conclusion

• Data shuffling on OpenCL-based FPGAs is challenging due 
to the run-time data dependency.

• We propose an efficient OpenCL-based data shuffling 
method. 

• The performance of graph processing framework 
integrated our shuffling is comparable to state-of-the-art 
RTL based works.

20



Acknowledgement

• This work is supported by a MoE AcRF Tier 1 grant
(T1 251RES1824) and Tier 2 grant (MOE2017-T2-1-122) 
in  Singapore. This work is also partly supported by 
the National Research Foundation, Prime Minister’s 
Office, Singapore under its Campus for Research 
Excellence and Technological Enterprise (CREATE) 
programme, and the SenseTime Young Scholars 
Research Fund. 

• We also thank Intel for hardware accesses and 
donations. 

21



22



Data shuffling on RTL-based FPGAs

• Fine-grained control logic based NoCs.

23

Data tuples D0

PE0

D1

PE1

D2

PE2

D3

PE3Stage 1

D4

PE4

D5

PE5

D6

PE6

D7

PE7

PE0 PE1 PE2 PE3Stage 0 PE4 PE5 PE6 PE7

Routing network 



Outline

• Introduction to data shuffling

• Data shuffling on OpenCL-based FPGAs

• Motivations

• Design and implementation 

• Graph processing framework with proposed shuffling

• Evaluation

• Conclusion

• Acknowledgement 

24


