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Graph processing on FPGAs

• Graph processing is widely used in variety of application 
domains.

• Social networks 
• Cybersecurity
• Machine learning  

• Accelerating graph processing on FPGA has attracted a 
lot of attention benefiting from:

• Fine grained parallelism
• Low power consumption
• Extreme configurability

2



• Previous RTL-based FPGAs development.

• Time-consuming
• Deep understanding of hardware  

• To ease the use of FPGAs, HLS tools have been proposed.

• High-level programming model
• Hide hardware details
• Both Intel and Xilinx have HLS tools

• Graph processing on OpenCL-based FPGAs.
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GAS model for graph processing

• Scatter: for each edge, an update 
tuple is generated with the format 
of <destination, value>.

• E.g. <2, x>, <7, y> for vertex 1

• Gather: accumulate the value to 
destination vertices.

• E.g. Op(P2 , x), Op(P7 , y)

• Apply: an apply function on all 
the vertices.

A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel, “Chaos: Scale-out graph processing from secondary 
storage,” in SOSP, 2015 4
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GAS model on FPGAs

• BRAM caching

• avoid random memory accesses to property array.
• Multiple PEs

• each PE processes a part of cached data and runs 
independently.
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Data shuffling

• Widely used for irregular applications.

• The data generated with format of <dst, value>  is dispatched  
to ‘dst’ PEs to process. 

• Challenges:

• Run-time data dependency
• Parallelism
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OpenCL does not natively support shuffling

• Fine-grained control logic is not available for OpenCL.

• No vendor-specific extension for shuffling [1].

• OpenCL only does static analysis at compile time, thus 
cannot extract parallelism in functions with run-time 
dependency [2].

[1] Kapre, Nachiket, and Hiren Patel. "Applying Models of Computation to OpenCL Pipes for FPGA 
Computing." Proceedings of the 5th International Workshop on OpenCL. ACM, 2017.
[2] Z. Li, L. Liu, Y. Deng, S. Yin, Y. Wang, and S. Wei, “Aggressive pipelining of irregular applications on 
reconfigurable hardware,” in ISCA, 2017. 
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Potential shuffling solutions with OpenCL

• Polling

• Each PE checks the tuples serially. 

• ‘Bubbles’ are introduced.

• 8 cycles for dispatching a set of 8 tuples.
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Potential shuffling solutions with OpenCL

• Convergence kernel from [1]

• Each PE writes wanted tuples to local BRAM in parallel. 

• The run-time data dependency is not resolved.

• Initiation interval (II) equals to 284 cycles.
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[1] Wang, Zeke, et al. "Multikernel Data Partitioning With Channel on OpenCL-Based FPGAs." IEEE 
Transactions on Very Large Scale Integration (VLSI) Systems 25.6 (2017): 1906-1918.

Conflicts!



• Polling: introduces ‘bubbles’. 

• Convergence kernel: the run-time dependency is still 
there. 

• What if we know the positions and number of wanted 
tuples? 

• PEs can directly access the wanted tuples.
• Cycles needed equal to number of wanted tuples.

• How to know the positions and number of wanted tuples?

• Decoder based solution.
• E.g. 28 possibilities,  for a set of 8 tuples, since each tuple 

has two statuses only.
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Proposed shuffling  

• Calculate the destination PEs.

• Compute an 8-bit MASK by 

comparing destination PEs 

with the id of current PE, 0.

• Decode the positions and 

number of wanted tuples.

• Collect the wanted tuples 

without “bubbles”.
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An example for a set of 8 tuples on PE0

7 6 5 4 3 2 1 0Index

Tuples

Decoder

Num=2;
Pos=2,6;

Filter

Destination PEs 1 0 2 2 3 0 9 11

7 6 5 4 3 2 1 0Index

Tuples

 hash_val == PE_ID? 1:0; 

0 1 0 0 0 1 0 0MASK

Tuples

7 6 5 4 3 2 1 0Index

Validate :

MASK 
E. (01000100)

0; 000000008

1; 000000008

1; 000000018

7; 065432108

8; 765432108

Number; 
Positions
E. (2; 000000628) 

(2; 000000628)

MASK 
E. (01000100)

0; 000000008

1; 000000008

1; 000000018

7; 065432108

8; 765432108

Number; 
Positions
E. (2; 000000628) 

(2; 000000628)



Proposed shuffling 

• No ‘bubbles’ - no cycle wasted on unwanted tuples.

• Resolve the run-time dependency.

• All the modules are pipelined. 

12



Proposed graph processing framework 
with shuffle
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Experimental configuration 
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• Our experiments are conducted on a Terasic DE5-Net board.

• BFS, SSSP, PageRank and SpMV are used as applications.

[34] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, “Kronecker graphs: An approach to 
modeling networks,” JMLR, 2010.
[35] R. A. Rossi and N. K. Ahmed, “The network data repository with interactive graph analytics and visualization,” in 
AAAI, 2015.



Efficiency of shuffle 

• Theoretical throughput = memory_bandwidth / tuple_size

• The performance is close the theoretical throughput.
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Efficiency of shuffle

• The throughput of our shuffle is much higher than 
existing shuffling solutions.
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[1] Polling This paper

[1] Wang, Zeke, et al. "Multikernel Data Partitioning With Channel on OpenCL-Based FPGAs." IEEE 
Transactions on Very Large Scale Integration (VLSI) Systems 25.6 (2017): 1906-1918.



End to end performance

• Compare the performance of graph frameworks with 
different shuffling solutions.

• Speedup of PageRank is up to 100× of [1], and 6× of 
Polling.
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Resource utilization
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• BRAMs are well utilized for vertex caching.

• PR and SpMV consume DSPs.  



Compare with RTL-based works

• Our approach achieves throughput that is comparable or 
even better than RTL-based graph processing designs.
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[11] S. Zhou, C. Chelmis, and V. K. Prasanna, “Optimizing memory performance for FPGA implementation of 
pagerank.” in ReConFig, 2015. 
[13] S. Zhou, C. Chelmis, and V. K. Prasanna, “High-throughput and energyefficient graph processing on FPGA,” in 
FCCM, 2016. 
[14] G. Dai, T. Huang, Y. Chi, N. Xu, Y. Wang, and H. Yang, “Foregraph: Exploring large-scale graph processing on 
multi-FPGA architecture,” in FPGA, 2017. 
[38] T. Oguntebi and K. Olukotun, “Graphops: A dataflow library for graph analytics acceleration,” in FPGA, 2016. 



Conclusion

• Data shuffling on OpenCL-based FPGAs is challenging due 
to the run-time data dependency.

• We propose an efficient OpenCL-based data shuffling 
method. 

• The performance of graph processing framework 
integrated our shuffling is comparable to state-of-the-art 
RTL based works.
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Data shuffling on RTL-based FPGAs

• Fine-grained control logic based NoCs.
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