
Runtime Programmable Pipelines
for Model Checkers on FPGAs

Mrunal Patel, Shenghsun Cho, Michael Ferdman, Peter Milder

FPGA Accelerates Model Checking
• Model checking ensures system correctness

– By exploring all states of a system
– Hours or days of run time with general purpose cores

• FPGAs show orders-of-magnitude speedup in run time
– 3 hours → 12 seconds reported by prior work [Cho’18]

Ru
n

Ti
m

e

Software Based
Model Checker

FPGA Based
Prior Work

FPGA Preparation Time Voids The Benefit
• Models change while system development in progress

– Fixing bugs, adding features, etc.

• Every model change result in new hardware logic
– Requires hours to prepare (syn, P&R) new model checkers

• Prevents rapid system development iteration

To
ta

l T
im

e

Software Based
Model Checker

FPGA Based
Prior Work

Synthesis
Place & Route

Our Approach: Programmable Pipeline
• Instruction controlled model checker on FPGAs
• Eliminate preparation time

– No FPGA synthesis and P&R for new/modified models

• Limited overhead when comparing to prior work
– Maintain 80% - 90% performance in run time

To
ta

l T
im

e

Software Based
Model Checker

FPGA Based
Prior Work

Programmable
Pipeline

Synthesis
Place & Route

Outline
• Overview
• FPGA based model checking
• Programmable Pipeline for FPGA Model Checkers
• Evaluation
• Conclusions

Explicit State Model Checking
• Bit vector explicitly represents system state

– Contains PC, registers, variable values, etc.

• State space is logically represented as a graph
– Edges represent all possible transitions of system states
– Some states represent spec violations (code assertions)

• Model checker explores the graph
– Visits all successors of each node

(e.g., breadth-first traversal)

– Discovers violating states

000

100 001

101 011

111

start

110
violating

state

Model Checker Overview
• State space exploration:

① Take a state from queue, generate all successors
② Check and log violating states
③ If successors not visited before, enqueue them

• Explore until queue is empty

Successor
Generator

State
Validator

Visited
State

Checker

State
Queue

Violating State Log

Start
state

Model Checking Challenges
• Costly computation for general purpose cores

– Bit manipulation, memory compare, hashing, etc.

• Limited parallelism
– Shared state queue and visited-state storage

Successor
Generator

State
Validator

Visited
State

Checker

State
Queue

Violating State Log

Start
state

Model Checking on FPGAs
• FPGA dedicated logic accelerates the computation
• Independent resources enables parallelism

– Performance grows linearly with num of model checker cores
– Limited by FPGA BRAM capacity and BRAM usage per core

• Prior work shows significant speedup in run time

Successor
Generator

(HLS)

State
Validator

(HLS)

Visited
State

Checker

State
Queue

Model Checking on FPGAs
• FPGA dedicated logic accelerates the computation
• Independent resources enables parallelism

– Performance grows linearly with num of model checker cores
– Limited by FPGA BRAM capacity and BRAM usage per core

• Prior work shows significant speedup in run time

Speedup in run time does not mean overall speedup

Successor
Generator

(HLS)

State
Validator

(HLS)

Visited
State

Checker

State
Queue

• HLS directly translates models into hardware
– Every model change generates new hardware circuit
– Synthesis and P&R for every new/modified model

• High resource utilization causes long P&R
– Hours of waiting to generate the bitstream
– Multiple iterations for timing closure

FPGA “Preparation Time” Problem

Preparation time kills the run time speedup

To
ta

l T
im

e

Software FPGA

Preparation Time

Run Time

Outline
• Overview
• FPGA based model checking
• Programmable Pipeline for FPGA Model Checkers
• Evaluation
• Conclusions

Replacing Model-Specific Logic
• Programmable pipelines replace model-specific logic

– Successor State Generator
– State Validator

• Maintain the same throughput as model-specific logic

Successor
Generator

(Programmable)

State
Validator

(Programmable)

Visited
State

Checker

State
Queue

Violating State Log

Start
state

FPGA Model Checker

Multi-Core for Parallelism
• Many independent model checker cores
• Control and violating state logging via AXI ports

Core #1

Core #2

Core #N

. . .

AXI Master Port:
Violating State Log

AXI Slave Port:
Control Register

AXI Interconnect

PCIe Bridge

Shared
Storage

FPGA

Host

Number of cores determines performance

Programmable Pipeline
• VLIW style pipeline
• 4 main stages for successor state generation

– Instruction Fetch, Variable Select, Execution, Store

Instruction
Fetch

Variable
Select Execution Store

Instruction Fetch
• Instruction contains control signals for following stages

– Including constants for value calculation

• Instructions stored in BRAM
– Guaranteed latency and one instruction per cycle
– Independent access for model checker cores

Instructions increase per-core BRAM usage

Variable Select
• Load variables and constants required for calculation

– Variables from the parent state vector
– Constants from instruction

• Each variable select unit loads one variable
– Number of select units dependents on models

Execution
• A grid of ALUs to calculate:

– Condition value
– New variable values to be updated

• Limit ALU connection to reduce instruction length
– … hence reduce BRAM usage

Execution
• Two types of ALUs:

– Normal ALU for doing calculation
– Load ALU for loading values from the state vector

• Indexed array access

• Limit num of load ALU to reduce connection

Normal ALU control bits

Load ALU control bits

ALU designed to minimize connection and BRAM usage

Store
• Update variables inside the parent state vector

– Based on condition calculated in the execute stage

• Each variable store unit updates variable
– Number of store unites depends on models

• One PC store units dedicated for updating PC

Pipeline Parameters
• Stage requirements vary for different models

– Variable select: number variables and constants
– Execute: width and depth for the ALU grid
– Store: number of variable that needs updating

• Affects the length of the instructions
– … which affects BRAM usage per model checker core
– … which affects number of cores can fit into an FPGA
– … which affects performance

Longer instruc on → fewer cores → lower performance

Overhead of programmability

Outline
• Overview
• Background
• Programmable Pipeline for FPGA Model Checkers
• Evaluation
• Conclusions

Evaluation
• Programmable model checker on FPGAs

– Programmable pipeline for successor generator
– With overhead of programmability (fewer cores)

• Baseline model checker on FPGAs: FPGASwarm
– HLS based successor generator
– No overhead of programmability (max num of cores)

• Common configurations for both model checker cores
– Same frequency
– Same per-core throughput (one-state-per-cycle)
– Same queue size and visited state checker

Performance only depends on num of cores

[Cho’18]

Benchmarks
• 6 models from the BEEM database

– Publicly available benchmark model set for model checkers

Benchmark State Vec.
(bytes)

Var. Sel.
Units

ALUs Grid Store
Units

Inst. Size
(bits)

Anderson.8 24 2 2x3 3 131

Bakery.8 28 2 2x5 3 167

Lamport.8 20 2 2x3 2 114

Leader_Filters.7 32 1 2x4 1 107

Mcs.6 24 2 1x1 2 64

Peterson.7 28 3 2x4 2 129

Results: Superset Checker for All
• One programmable checker for all benchmarks

– Use the maximum parameter values
– Load the model checker once for all benchmarks

Benchmark State Vec.
(bytes)

Var. Sel.
Units

ALUs Grid Store
Units

Inst. Size
(bits)

Anderson.8 24 2 2x3 3 131

Bakery.8 28 2 2x5 3 167

Lamport.8 20 2 2x3 2 114

Leader_Filters.7 32 1 2x4 1 107

Mcs.6 24 2 1x1 2 64

Peterson.7 28 3 2x4 2 129

Superset 32 3 2x5 3 172

0.71
0.77

0.65

0.86

0.71
0.77

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Anderson.8 Bakery.8 Lamport.8 Leader_filters.7 Mcs.6 Peterson.7

FPGASwarm Superset

Results: Superset Checker for All
• Maintain at least 60% run time performance

– Still significant faster than software model checkers

• Waste BRAM for models with short state vectors

Unnecessary BRAM usage hurts performance

Optimization: Best-Fit Checkers
• Superset checker wastes BRAM from some models
• Solution: Pre-generate a model checker library
① Sweep parameters to pre-generate model checkers

– State vector size, number of sub blocks in each stage
– Does not affect preparation time or run time

② When given a model, analyze its parameters
③ Load the best-fit model checker to FPGA

– With the closest parameters that can check that model

Optimization: Best-Fit Checkers
• Regain performance using best-fit checkers

– Performance only affected by overhead of programmability

Recover 80% - 90% performance of prior work

0.71
0.77

0.65

0.86

0.71
0.77

0.85
0.81

0.89 0.89 0.91
0.87

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Anderson.8 Bakery.8 Lamport.8 Leader_filters.7 Mcs.6 Peterson.7

FPGASwarm Superset Best Fit

Conclusions
• Model checker on FPGAs shows significant speedup

– Orders-of-magnitude speedup in run time from prior work

• But the FPGA preparation time voids the speedup
– Synthesis and P&R required for every new/modified models

• Programmable pipeline eliminates preparation time
– Avoid synthesis and P&R
– Pre-compiled best-fit bitstreams to minimize overhead
– Maintain 80% - 90% of the run time performance

shencho@cs.stonybrook.edu

Backups

9/17/2019

Backups

9/17/2019

Backups

9/17/2019

Model Checking Time
• FPGA preparation time is significantly longer than

model checking runtime by software

17.58 17.12
25.05

9.11
0.12

16.12

137
120 126

104

183

148

0

20

40

60

80

100

120

140

160

180

200

Anderson.8 Bakery.8 Lamport.8 Leader_filters.7 Mcs.6 Peterson.7

Ti
m

e
(m

in
ut

es
)

BEEM Runtime FPGA p&r

Background

• Promela
– ND: Non-determinism factor
– PC: Current state
– PID: Process ID

byte balance=1;
active [2] proctype customer() {
byte cash=0;
S: if :: goto W;

:: goto end;
fi;
W: if :: d_step { balance=balance-1;

cash=cash+1; };
goto end;

fi
end:

}

Instruction Fetch

• address <= {PC, ND};

• Instruction format

Selection
Unit

0 ... Unit
m

Execute 0 Execute 1 Execute 2 Store
ALU

0 ... ALU
n

ALU
0 ... ALU

n
ALU

0 ... ALU
n

Unit
0 ... Unit

o

(Software) Swarm Verification
• Expose parallelism in model checkers

– Replace one large model checker with many small ones
– Each “verification task” (VT) explores part of state space

• VTs will overlap in exploration
• … but combination will statistically cover the space

• Advantages:
– Massive, completely independent parallelism
– Memory usage per model checker: GBs → MBs

[Holzmann’08]

→State
Space

Model
Checker

/ State
Space

/
Model

Checker
VTs

Pipeline Stage Registers

• PID
• M selected values
• N immediate values (Constants)
• Several temporaries
• Instruction

